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A model is considered for\& reactions, based on two interacting states. Relevant bond energies, standard
electrode potentials, solvent contributions (nonequilibrium polarization), and steric effects are included. A
unified approach is introduced in which there can be a flux density for crossing the transition state, which is
either bimodal, one part leading tqZand the other to ET products, or unimodal with a less marked energy-
dependent separation of the rates of formation of these products. In a unified description an expression is
given for the reorganization energy, which reduces in the appropriate limits to the gir@n8 ET/bond

rupture cases. Expressions are obtained for tl#r&te constant and for its relation to that of the concerted
electron transfer/bond rupture reaction. Applications of the theory are made to the cross-relation between
rate constants of cross and identity reactions, experimental entropies and energies of activation, the relative
rates of K2 and ET reactions, and the possible expediting of an outer sphere ET reaction by an incipient
Sw2-type interaction. Results on the photoelectron emission threshold energies of ions in solution provide
some information on a solvation term, and another quantity can be estimated using data from gagdhase S
reactions or from quantum chemistry calculations. Also introduced for comparison is an adiabatic model
that is an extension of a bond energyond order formulation for gas phase reactions.

I. Introduction magnitude. Other experimental observations, discussed later,

A subject of continuing interest is the detailed mechanism also stm_1u|ated the preseht treatment. .
of Sy2 and related electron transfer (ET) reactions and the R€action 1 may occur in a concerted or sequential manner
relation between therds If A*— and A~ denote a radical anion  @nd in either case be followed by reactions of the products.

and an anion such as a carbanion, or other electron donor, sucH Nese products may, in turn, react before or after escaping from
the solvent cage, depending upon the system. Many studies

as an electrode, one type of electron transfer reaction, frequently h )
termed “outer sphere,” is have been made of the e_ffect of varying the various reactants,
the solvent, and, when A is an electrode, the electreddution
- Al . - potential difference. When RX is sterically hindered toward
A FRX=AHRAX ET (12) an attack by A on the C in the>C—X bond in RX in reaction
or 2, that reaction tends to become reaction 1. That trend is also
expected when the AR bond is sufficiently weak.
AT +RX—A+R+ X ET (1b) Stereochemistry has played a significant role in studies of
the reaction mechanism, inasmuch as 100% inversion implies
where R is an organic group and X is usually but not necessarily an 2 reaction mechanism only, while partial inversion can
ahalide. A treatment of the concerted ET/bond rupture reactionsimply the operation of both mechanisms, as in stereochemical
1la and 1b was given by Seaamt® using Morse and Morse-like  studies of the reaction of anthracene radical anions with optically

repulsive curves for RX and*R~, respectively. active 2-octylhalide8. Other techniques such as measuring
An Sy2 mechanism of the electron transfer type, on the other certain ratios of products have also established the ratio of
hand, is described by reactions 1 and 2 rate constants, for example for anthracene
radical anions reacting with methyl halides.
A" +RX—AR+ X~ S\2 (2a) Another feature of & reactions is the “cross-relation”, which
relates rate constants of “cross-reactions” to identity reactions
or (a relation that played a prominent r#lé1acin the interaction
of theory and experiment for electron transfer reactions). This
A 4+ RX— AR’ + X~ S\2 (2b) relation has also been applied tq2Sand other reactioris?

There is also a large body of experimental studies comparing
We consider §2 reactions in solution, using a two-interacting- ateé constants forN® and ET reactions, their activation energies
states model. This treatment differs from one introduced for @nd activation entropies, and also the competition of the two
comparison in Appendix A. The latter is an extension of types of reaction within the same system (e.g., ref$ nd
Johnston’$ BEBO (bond energybond order) model for & 9). Extensive experlmental studle§ have alsq been.made.of gas
reactions of neutrals to those of the ET type. The present two- Phase &2 reactions*2 A comparison of their barriers with
interacting-states model is motivated, in part, by trying to explain those of &2 reactions in solution provides information on
why reactions 1 and 2 sometimes have somewhat comparab|e30|Vent effects and is discussed in a subsequent section.
rates while for other systems they can differ by 20 orders of ~ The paper is organized as follows: In section II, some general
comments are made on factors that the theory should incorpo-
€ Abstract published ilAdvance ACS Abstractdpril 15, 1997. rate. A unified pictorial description of\& and concerted ET/
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Figure 1. Schematic contour plot of the upper and lower potential energy surface for a reaction in which only two electronic states need be
considered in the fully separated species. In one of these (the shaded region) the extra charge is localizexhdnnAthe other on A. The

dotted line indicates the TS. As indicated by the arrows, crossing it in one region correspondsy®raacBanism and crossing it in another to

a concerted ET/bond rupture. There is a substantial “splitting” of two surfaces (a and b) in the vicinity of the dotted liné wdwgiorhoth AB

and AB distances are small, and there can be an admixture of other electronic configurations, sydB'@sAand A*B~A_, in the TS region.

There is a saddle-point (not shown) on the lower surface, near the center of2tear8w.

bond rupture reactions is then given. ThgSimit is treated metathesis reactions of neutrals this effect can reduce the energy
next, including both the reorganization energy and the partition barrier by a factor of about 10 or so in some systéms.
function factor. (These two aspects, together with transition (i) The Sy2 reactions have a larger steric effect than the outer
state theory, yield an expression for the rate constant.) A sphere electron transfers. The magnitude of this effect is
functional form is then suggested for the “resonance energy” expected to depend on whether the transition state (TS) is
of the two states, one that provides a bridge between the tworeactants-like, products-like, or in between.
types of reactions. An expression for the2Sate constant is (iii) Solvent effects typically increase theSreaction barrier
obtained, and the case of the outer sphere concerted ET/bongelative to its value in the gas phase. Some partial desolvation,
rupture reactiohis then recalled for comparison and shown to with an accompanying increase in energy barrier, is expected
be a limiting case of the present unified treatment. It is next to accompany the formation of the TS, since the charge in the
shown from the expression for the reorganization energy how TS is delocalized over a relatively large system, rather than being
an incipient ®2-type interaction may expedite the concerted |ocalized on a smaller system, the An eq 2. This effect is
ET/bond rupture reaction. the usual static solvent effect. When the charge distribution in
In section Il applications are made to several phenomena orthe TS is dominated by two very different contributions, a
deductions, to experimental data on the cross-relation§@ S nonequilibrium polarization of the solvent may occur: the polar
reactions, the relation of the@ and ET rate constants, entropies solvent molecules are slow moving and cannot be appropriately
of activation of %2 and ET reactions, the effect of the standard oriented to each of the two different contributions to the charge
free energy of reaction on the rate constant, and the use of gasiistribution. This effect is particularly marked for weak-overlap
phase {2 data to obtain information for application to solution electron transfer reactions not involving bond rupture and in
phase {2 reactions. We conclude with some remarks on fact is a cornerstone of that thedi§! It is the counterpart for
computer simulations, on applications of quantum chemical these systems of the conventional static partial desolvation
calculations, and on nonequilibrium polarization. An adiabatic involved in formation of the TS.
formulation, an extension of the BEBO treatment fai2S There has been extensive discussion in the literature, using
reactions of neutrals, is given in the Appendix. both stereochemistry and activation energies and entropies, of
the relation between thex3 reactions 2 and the ET reactions
1. We shall consider how that discussion, which we describe
Introduction. We recall that in a reaction the reactants below, can be phrased pictorially in terms of the crossings of
diffuse toward each other to form (for convenience of calculation different parts of a single transition state “hypersurface” (Figure
at least) an “encounter complex” R from which they react. 1). (The hypersurface is a surface Mf— 1 dimensions that
Reaction then leads to an “encounter complex” P of the products Separates the reactants’ from the products’ spatial regions (or
and thence by diffusion to the separated products. In the presenfhase space) of thie-dimensional space.)
paper we focus on the process leading from R to P and then The model for an § reaction considered below involves
calculate the bimolecular reaction rate constant by assuming,two interacting states, with a resonance energy lowering of the
in effect, a pre-equilibrium for R. If the diffusion from the energy barriet? In the model the three items listed above are
separated reactants to form R, or from P to yield the separatedtreated using a nonequilibrium solvent polarization for item iii.
products, becomes sufficiently slow, the calculation below also The two-state description of the transition state (TS) of this reac-
provides a unimolecular rate constant for the-RP process, tion can be regarded as corresponding to a mapping of the results
upon dividing the bimolecular rate constant by the equilibrium of a multistate (not merely two-state) electronic configuration
constant for forming the encounter complex R. This unimo- calculation in the vicinity of the TS onto a two-state description.
lecular rate constant then serves as a boundary condition forA mapping onto two states has been suggested in the litef4ture.

Il. Theory

the solution of the diffusion equation. When this resonance energ@yis unusually large, the use of
In treatments of @ reaction rates it is desirable to include two diabatic states as a starting point may not be as good as
factors such as the following: employing an adiabatic model, an example being the Finklestein

(i) The energy barrier arising from the bond rupture is reaction discussed later. However, it can still be useful for our
decreased by formation of a new bond. Indeed, in gas phasepurpose. In many other cases described later, this resonance
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energy lowering is much less. A virtue of a two-interacting- is one that varies continuously between these two liffits.
state model is that it provides a simple basis for developing a These two views can be described pictorially with the aid of
unified description of the two types of reaction and, we believe, Figure 1, in terms of the flux density across the dotted line: If
insight as to why the rates sometimes differ by less than an separate ET and\2 paths contribute, then this flux density is
order of magnitude. The model is less valid for som@ S  bimodal, with one peak in the\8 path region in Figure 1a and
reactions, those whose resonance energy lowering is so largea second peak in the ET path region there. If, instead, there is
that other zeroth-order states are almost certainly mixed in.  only one peak in the flux density across the TS dotted line, i.e.,
Potential Energy Surface. It is useful to consider firstwhat  if a unimodal behavior occurs, the flux will be concentrated

the potential energy surface might look like for gg2Seaction, either along the @ path or, for other systems, along the ET
B B path or, for still others, along some in between path across the
A, +BA,—AB+A; (39) dotted line. In that last unimodal case some crossing trajectories

could end up in the & region of the products, either directly
or by stabilization of a transienty3-like “intermediate,” and
some in the ET region, again either directly or by dissociation
of that intermediaté®
and for an ET reaction Itis conv_enie_nt initially to treat the two paths labeled by ET
and by {2 in Figure 1a separately and then to show how these
A, +BA,— A +B +A (4a) paths are limits of a unified treatment. In the latter, crossings
of other parts of the dotted line region are included, namely, in
or the region between the two arrows. Indeed, this latter crossing
could prove to be an ingredient in explaining some observations
Ay +BA A B +HA (4b) mentioned later.

Not shown in Figure 1a is another TS, namely, for a different
reaction, the ET reaction between nearby separated partigctes A
and Ay to form A and A~. Here,x; andx, are both large,
but only because Bs far removed from the other two particles.
The TS for this reaction is along the ling = x in Figure 1a,
with, at the same time, Aand A~ being close together and
with there being a suitable fluctuation of the solvent coordinates
to permit this ET to occur. To describe this reaction requires
an additional coordinate, in aniAA,* encounter complex, a
fluctuation coordinate analogous to but different from the Y

or

A, +BA, —AB +A, (3b)

In the interests of brevity we shall use egs 3a and 4a as
examples, as in Figure 1, but all such descriptions are intended
to apply to eqgs 3b and 4b as well, simply by replacing By
A

A potential energy surface is sketched schematically in Figure
1 as a function of the /8 and AB distances. In this Figure,
two electronic states are considered for the fully separated
systems in the solution, A + A;* + B*and A~ + Ay* + B-.
For concreteness, the energy of the latter is taken to be lower
than that of the former. The lower of the two adiabatic potential introduced in eqgs 5 and 6 below. Each of these fluctuation

energy surfaces is depicted in part a of Figure 1 and the UPPET e 5 ordinates is related to a molecular coordinatéd, described

?‘d'aba“c SL."face in part b. In. each case .the shaded region 'Sn a later section of this article, eadtts being chosen for each
intended to indicate an electronic configuration where the charge

is centered mainly on thesA, while in the unshaded region it reaction studied. o
is mainly on the A~ The model fgr the @ reaction is formulateq next.

The dotted line borderline region is composed of contributions ~ TWoO-Interacting-States Model. In an extension of electron
from both electronic configurations (and from others) and serves {ransfer theory to ET reactions accompanied by bond rupture
approximately as the transition state (TS). In the dotted line Sav@nf employed a Morse potential energy functibg1 —
region there is a large splitting (avoided crossing) of the two €XP(a1x1)]? — Dy for the rupturing bond RX in reaction 1a or
potential energy surfaces when bothBAand AB distances 1b. _I_—|e_re,x1 denot_es the bond distance displacement from its
are small. The splitting becomes small, presumably eXponen_equlllbrlum value in RX. He also. assumed for the repulsion
tially so, when either of those distances becomes large. Thereterm between Rand X" the quantityD: exp(-2ax). (The
are, of course, many more coordinates, including the coordinates'®Pulsion arises from the Pauli exclusion principle [cf. ref 17,
of the solvent molecules. They are included in the formulation, valence bond theory, and ref 7a].) There was an experimental
and the dotted line in Figure 1 is intended to representan ( dasis for the exponential modeling of the repulsion, namely, in
1)-dimensional TS hypersurface in tNedimensional space. A the experiments and interpretation of Wentworth and co-workers
connection with computer simulations is discussed in a later Of €xperiments on electron attachment to gas phase alkyl ha-
section. lides!® TheD; includes the effect of the change of bond angles

The system can cross from the reactants’ to the products’ from tetrahedral in RX to planar trigonal in"R(Cf. also ref
region at any place on the dotted line TS. In crossing one part 12 of ref 6.) We shall use similar ideas foxZSreactions.
the reaction corresponds to an2Sreaction, reaction 3, while To treat the {2 reaction 3, we introduce in Figai2 a free
in crossing another part it corresponds to an outer sphereenergy bookkeeping diagram. (Free energy curves were used
concerted ET/bond rupture reaction, reaction 4. The former in ET reactions, e.g., refs 10, 11, 19.) One contribution to the
involves passage across the lower energy regions of the dottedree energy change for forming the TS from the encounter
line in Figure 1a, and so has a lower activation energy and is complex R of the reactants is denoted thereAfy;. Treated
indicated by an g arrow, while the ET occurs across an upper Sseparately are contributions due to changes in rotational
region of the dotted line in Figure 1a and is indicated by the vibrational partition function®. We first remark on the various
ET arrow. In some intermediate region of the dotted line free energy changes depicted in Figure 2: The free energy
reactive trajectories could end in either product region. change from the separated reactants to the reactants’ encounter

Two views have been expressed in the literature regarding complex R is denoted by, — ksT In q@q/q®) . where the
the ET and {2 reactions: They occur on the same potential superscripts indicate the number of coordinates involved, and
energy surface and (i) are competitRpe,1315160r (ii) the w; is the interaction free energy ofiB and A~ in the encounter
behavior complex R (“work term”). (The equilibrium constait for
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TS AG, = DyX,* + DXL — X,)* + A1 - Y)? (6)

In a two-interacting-states model the electron transfer occurs,
in the first approximation, at the “intersection” of the two free
energy curved®1l.1® Thereby, the free energi& andG; are
equal, and it follows (Figure 2) that

~Kp 1/ 0 Sl); - n o — o or
LT 0 1000 kT In Q' /0y AG, — AG, = AGgp + ksT In Q(1)/Q(0) = AG®™  (7)

\o..

AGY,
w, = kT In 42040/ g,

reactants A\G”>

Figure 2. Diagram of free energy changes and definitions fora2 S~ AG° =ER ,, - —Ex . o- —Dagt+ Dag —
reaction. The various symbols are defined in the text. 22 e 2 L
ke T IN Qa5Qn /Qa gQ%, (8)

P where AGgp is related to the standard free energy of reaction
AG® as in eq 9 below and as depicted in Figure 2.

The standard free energy of reactid®® of reaction 3 is
given in terms of standard potentidts, theD’s, and partition
functions as

W, = kT 10 40040 G

products

forming R would be obtained by settingksT In K, equal to
the above free energy change.) T8, o, ¢ are defined ~ whereER,.a,_is the standard potential of the half-cell reaction

in ref 20. A* + e— A, and theQ's denote the partition functions of the
The displacement of the;B bond length from its equilibrium  cited species. Since the reactions are occurring in solution, the

value in AB is denoted byx. The changes inx{, x;) occur minor distinction between Gibbs and Helmhotz free energies

from R to the products’ encounter complex P, rather than before can be ignored throughout.

R or after P. The quantitie®(0), Q(1), andQ' are defined by As one sees from Figure 2, the standard free energy of

setting Q0)a). . Q(1)g®) . and Q'q?) equal to the partition ~ reaction from R to PAGge, is related toAG® by
functions for the reactants, the products, and the TS, respec- DD 1)
tively. The firstgl) _is that for the reactants, in the center of AGre=AG® + W, — W, — kgT IN[Qro it/ Crand o/
i i 2) (1 3
mass sys(gem of coordinates, the second.ls that. for the products, @) 1, (9a)
and theq; is that for the reactants. This choice of notation
for the Q's is introduced in order to yield simpler expressions where the subscrigh or r denotes the encounter complex to
later on. Q(0), Q(1), and Q' contain the same number of \hich thea@a®/a® _terms refer. Hence
. OrotQvib/ Atrans ' '
coordinates.
For AG,, the free energy of formation of the stadg (X2, Y) AGRp=Eza, ~Eia- ~Dag T DagtW,—w (9Db)
from R, excluding the andq&g terms (cf. Figure 2), we write
where partly for simplicity of notation we have canceled the

AG, = Dy(X; — 1)? + D,X,* + oY (5a) partition function ratios that appear in egs 8 and 9, probably
with minor approximation, since thd and AB in eq 8 are
where neutrals. One can always reintroduce them in order to calculate
AGgp.
X =expl—ax), Ao=2yXpX) (i=1,2) (5b) The TS should be located by minimiziagG, — kgT In QT,

subject to the constraint imposed by eq 7. A variational
andx; refers to the B-A; bond displacement coordinate. Ineq parameter would be introduced in@ for this purpose. We
5 there is a solvent fluctuation terbgY?, in which a generalized  return to this point later. For the moment we treat the variation
fluctuation coordinaté is introduced whose equilibrium value  of Q' along the reaction path as “slow” and include that variation

is O for the reactants’ state and 1 for the products. Adia eq later in an approximate way. Th8, and G, surfaces in the

5 will later prove to have its usual significance as a reorganiza- (X, Xz, Y) space intersect, and we find the lowest point on the
tion energy. Thélgin AoY2 may be a function ofXy, X;), since intersection by minimization oAG, in eq 5a, subject to the
the geometry of the solute depends &&, (X2) and is assumed  constraint imposed by eq 7, and treati§X;,X;) as a slowly

to be slowly varying. varying function of ¥;, X;). We obtain, in terms of a

The Dy(Xs — 1)? term in eq 5 describes the interaction Lagrangian multipliem,
between A and B in AB, and theD,Xz? term denotes the
repulsion between M and A~. As noted earlier th®; and X;i=m+1, X=-m Y=-m 2m+1=-AG"/1
D, include the effect of the changes in bond angles. We should (10)
keep open the option, should future quantum chemistry calcula- . ) o
tions support it, of adding a positive term linearXato eq 5a We thus find, withAG® given by egs 7 and 9b,
and, in eq 6 below, linear iX;. i AG®N\2

There will also be some solvent caging effect, but from an AGr= 4_1(1 + 1 ) = Bi (12)
energetics point of view its effect on eq 5 is expected to be
relatively minor. Its effect should be mainly on the diffusion \yhere
aspects of the problem, when diffusion to R fresor from P
to « becomes slow. The molecular counterpart of Y is an A=+ DpgtDapg=2o+4 (12)
energy difference coordinai®Us discussed in a later section.

We write a similar expression fakG;, for forming the state  and we have now included the resonance engygj interaction
(X1, X2, Y) from the products’ encounter complex P, again of the statesi(j = 1, 2). The second half of eq 12 also serves
excluding theQ and q\(,ft), terms in the definition, to defined;. Thelgin eq 12 is the change in solvation energy
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accompanying a vertical transition;Z/BA; — A;BA;~, using
the ABA;~ geometry in the TS. The distortion of the free
energy by the; interaction may cause the TS not to lie exactly

Marcus

The AG' can be written as the sum &Gy, given by eq 11,
the work termw;, and the partition function term;ksT In Qf
g2IQ0)) . Theg@igl® .and theksT/h contribute to keT/

rot

where the free energies of the two undistorted states are equalh) exp(—AG'/ksT) a factor denoted byZ,2% a “collision

We will assume that the resonance enefgyf an identity
reaction (A = A;) is proportional to some property denoted by
Di, which is to be chosen later and which depends on e A
interaction. Sinced; should also decrease exponentially with
xi, we shall also take it as proportional X¢# wherel is some
power or fractional power. In the case of a nonidentity reaction,
Bij depends on both the;B and BA interactions, and we will
assume that it is proportional tﬁ),’(Dj’)”2 and that it decreases
exponentially withx; andxz, namely, it is proportional taX{(X;)'.

In summary, we assume

Bi = viDi

ﬁij = (Vi?’j D,iD,j)llz(4Xin)|

(13a)
(13b)

where a typicall is to be determined from some quantum
chemistry estimate. (Alternatively, an arithmetic mean, rather

frequency”. We thus obtain

ks, = ZIQ'/Q(0)] exp(~AGE ,lksT) (15)
where
Ay +D;+ D, AG®
AGE, =W, + AGr =W, + ————— —fj +——+
AGOI2
~— (16)

AG® is given by eq 9b and the second half of eggy by eq
13c, and the sum in the second term on the rigiit4s(cf. eq
12). Strictly speaking, the pre-exponential facibin eq 15
will be somewhat larger than in ref 20b, when a distribution
function is introduced for the pair of the reacting solutes in the
liquid.?*

We consider next the factd@'/Q(0). A large moment of

than a geometric one, might be more appropriate.) Equationinertia in R, writteRoP asuo?, enters intog®, and from it into

13b reduces to 13a in the casei 6f j, sinceDi = Dy, yi = v;,
andX; = X; = 1/2 then. Thd in eq 13b may be on the order

Z. The corresponding moment of inertia in the2STS is
somewhat smaller than it is in R. We can include this effect

of unity: In a chemical bond, two electrons are involved, and by defining aZs/Z, which is the ratio of these moments of
at larger distances this interaction, which can be regardedinertia, and employing thiZs in eq 19 below. We consider
roughly as a resonance energy of the separated atoms, involvegext the remaining factors appearing @/Q(0). They are

two electrons and varies (Morse potential at largpasX; and
at negativex; as X2 Diatomic Coulombic and exchange
integrals have indeed been expressed in terms oKithed In
ABA;~ four electron integrals replace the two electron ones,
and sqg3; may be proportional toXX;)', wherel is perhapsa.
1to 2 instead of 1/2 to 1. Quantum chemistry calculations of
the potential energy surfaces will permit the testing of the
appropriate functional form fof;.

From eq 10 one finds tha; X, equals—m(m + 1), i.e., (1/
4)(1 — AGglAs2)? at the TS of the @ reaction. We have,
thereby, from eq 13b,

Bi = (yDyD) 1 — (AGY Jis )] (atthe §2TS)
(13c)
In an application to the cross-relation, we shall approximate

the geometric mean in eq 13c by the arithmetic mean. With
this subsequent step in mind eq 13c is rewritten as

Bi = 1Ay + ¥,D] — [(rD)" —
D) 17}HL — (AGE A5 )7 (atthe §2 TS) (13d)

The term involving the difference of the square roots will be
neglected when{D})*? and (;D})*"2 are not too different.

associated with the conversion of individual rotations of the
reactants into bending vibrations of the TS. Typical\°'/A

is relatively small: aAG' vs AG® plot for the $2 reaction is
frequently linear with a slope near 0.% 0.1, and the
configurations of the TS (e.gY, Xi, X2) are roughly midway
between those of the reactants and the products. In this case it
is expected thaQ' have the valueQr, estimated later, for a
tight TS. One question is whether, wh&°'/1 approaches
—1 and the TS becomes, energetically, reactants-likeQthe
(apart from theZs/Z) approachexQ(0). Similarly, when
AG®'/) approachestl and the TS becomes, energetically,
products-like, doe€" approachQ(1)? If the answer to both
guestions is yes, then one possible interpolatiorQfobetween
these three points is

QUQr= QO "Zs /20  —1=n=0 (17a)
= (Q)Q)"(Zs J2) 0<n<1 (17b)

where
n=AG"/A (18)

For describing th& for a tight TS,Qr, we first denote by
Orot @n individual reactant’s rotational partition function that
becomes a vibrational partition functiag;, in the tight TS.
Inasmuch as the polyatomic typically nonlinear reactants have

The rate constant is next evaluated using transition state ihree rotations each and the transition state has three, it follows

theory20a

ge—AGVkBT

k=h

(14)

We note, in passing, that for reactions in solution there is some

coupling between the solvent coordinates and the vibrational
rotational coordinates of the solute that participate in@=
even though we later approximate tQés by their gas phase

that three of the reactants’ rotations have become vibrations in
the transition state, in the case of a tight TS. We have, thereby,

Q/Q(0) = (Ghip/or)’ (19)
and whenAG&y1 is relatively small, eqs 1519 yield
ks,2 = Zs o(Ghin/Cho)” €XPAGE fkeT)  (20)

with AG%2 given by eq 16. Of course, not all of thgiy's

values. The solvent and solute coordinates are also coupled taneed be equal, nor all of thg.'s, but the notation in egs 19
the motion along the reaction coordinate, so permitting the and 20 is convenient and suggestive, and in the application
system to surmount the reaction barrier. below we do not assume any equality of tiye's or of the
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Qvib'S. Whenn in eqs 17 and 18 approachesl, and soQ'
approache®(0) or Q(1), apart from & factor, the TS becomes
loose, and the pre-exponential factor in eq 15 could then become
substantially larger, for example by a factor of 100 (cf. an
estimate forQr later). Another effect of steric hindrance,
besides leading to eq 19, is an energy of distortion effect
reflected in part in the value db,, the energy of the newly
formed bond in reaction 3. Steric hindrance reduces the
magnitude ofD,.

The calculation ofio for the ABA;~ system in the TS
involves describing the geometry of the solute and then making
a nonequilibrium polarization calculation. One useful experi-
mental quantity is the, for a single iomy(A;~), obtained from
the threshold energf: of the photoelectron emission by the
ion in solution2 If G — G2 is the difference of
equilibrium solvation free energies ofi"Aand A~, then a
thermodynamic cycle shows thag(A;™) is obtained frorf?a

Ao(A) = B+ G- G~ E,

TS

AG

PN

Al
~k,TIn Q" /1QMO) 6, TIn Q' 10(M)g2

—adk

@) (1) 3)
W, = kT In G0 G, | Qopans

A\(y)‘

Figure 3. Diagram of free energy changes and definitions for a
concerted ET/bond rupture reaction.
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where the partition function® refer to the cited species and
contain all coordinates of A B*, and AB. The last two terms
in eq 25 represent the free energy of reaction fgB A~ A* +
B, the zero-point energies being included in 's.

(21)

whereE,, is the electron affinity of &. If A~ is, instead, an
ion of arbitrary charge, the same equation applies, witméw ) €51 ]
denoting an Awith one less negative charge than the ion in We consider next, as in Figure 3, a free energy bookkeeping
question. diagram for the concerted bond rupture/ET reaction, analogous
Using a linear response approximation, we also note that theto that in Figure 2. The left-hand portion of Figure 3 is the
Jo for any geometry and any initial charge distribution can be Same as in Figure 2, but the right-hand part involves a
calculated from a difference of equilibrium solvation free termolecular collision of the products to form the encounter

energiegb

Jo= 1%~ G1% 22)
where the 1 denotes the final charge distribution after a vertical
transition (in the present case after loss of the electron) and 0
denotes the initial charge distribution, so thatQldenotes the
difference of the two charge distributions. The e,op superscript
denotes the equilibrium solvation but where only the electronic
polarizability of the solvent enters rather than the total (electronic
plus the nuclear) contributions.

In concluding this section we briefly comment on an
implication of the preceding equations for the symmetric
stretching force constaig,min the ABA;~ TS for the identity
reaction, compared with the related stretching force congtant
of AiB. The symmetric stretching coordinate in the T is
(1/\/5)(x1 + X2), i.e., V2x along the linex; = xo. Using eq 5,
and introducing ;i given by eq 13b, we seé{G; — (;)/ox =
0 to locate the minimum along th&t = x; line. The desired
force constant is?¥(G; — Si)/ax?, ksym calculated at that
minimum. HereG, = D1(X; — 1)2 + D1X42 — Dy, sinceX; =
X, along the line. One finds

ksym= ai2Di (I = 1)
k = 28D,

We have written eq 23 for the choice b= 1 in eq 13b, for
simplicity, but anothet can readily be introduced instead.
Outer Sphere Concerted ET/Bond Rupture Reaction. To
compare the above results with those obtdiriedthe ET/bond
rupture reaction 4, we first recall briefly a derivatfoof the
rate expression. We consider first the standard free energy of
reaction. TheAG® of reaction 4 can be expressed in terms of
the standard electrode potentials, a bond energy,
functionsQ:

AG*=ER ja, —ERa- T Dap —KeTINQx.Qe/Qn g
(25)

(23)

(24)

complex P. Depending on the detailed description of P, P may
have a more or less linear or triangular configuration ef A

B, and A°. In the former case the six translations of the three
products in the center of mass system of coordinates become
two rotations and four “vibrations,” all caged by the solvent
molecules. In the triangular case there are either three rotations
and three solvent-caged “vibrations” or, if two members of the
three, e.g., A and B, “rotate” about their own center of mass,
there are four rotations and two vibrations in the motion of the
three particles with respect to each other. We allow for each
of these two possibilities, and one other, by using the symbol
o in Figure 3. In forming the termolecular encounter
complex P from the three separated produqﬁgnS is con-

verted toq@g@q@, where g may denoteq?, or 2, or
a2 Further, some of theyo's may be gy, where hr
denotes a hindered rotation.

In Figure 3 we have again used the symbQ(®), Qf, and
Q(1), defined by stating that the partition function of the two
reactants (in the center of mass system of coordinate&3{d¥s

(@ , that of the TS Q112 (q@ referring to the reactants in

qtrans
R), and that of the products (3(1)(15,6‘,;”S In Figure 3 it is seen

that the partition functions of R and P a@é0)q2q}) andQ(1)

0%9@q@, respectively. The total number of coordinates in

Q(0) and Q' is again three less than the total number of
coordinates of the reactants, wh§1) has three less tha(0).
We return to this point later. From the above definitions or
Figure 3, theAG&p that enters into eq 7 is related £&G° by
AGgp=AG® +w, —w, +
ke T In[of 2,

(A2

(3)
rotdint Qvib

(2)4(1)
qtran

rotqvib]r (26)

{9 1/[Ghrandd

where the p and r subscripts again denote the values in the P
and R encounter complexes. For simplicity of notation we have

and partitionyritten all g,y's in Figure 3 with the same symbol and els

as being equal, but this notation is easily changed to specify
the species to which eachrefers.

The relation betweeAGgp and theE®’s, given below by eq
27, is obtained from eqgs 25 and 26. We note QaiQs/Qa.5
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rv

can be written asQyQy,/Qi s Where rv denotes the
rotationat-vibrational partition function.

AGRp=EZ ja, — EAja,- T Dap T W, — W, — kT
In(Qx. Qs aRaQue) (27)

The number of coordinates involved in the numerator of the
partition function ratio in eq 27 is the same as the number in
the denominator. We note that in the quanfif@ip the gransS

Marcus

A question arises now concerning the fac®vQ(0) in eq
33. The correct value o®" would again be obtained from a
minimization procedure that includeetksT In Qf in the
minimization. However, one simplifying approximation is to
assume that the ET/bond rupture reaction is fully outer sphere
and thatQ'/Q(0) equals the ratio of the large moment of inertia
of the TS to that which appeared in R and henc&,imnd to
suppose that the new rotations that may eventually appear in P
(in g are still, in the TS, the vibrations that they were in the
reactants. In that case we have

that were present in eq 26 have disappeared in 27, as expected.

Further, when the attacking agent is*Ain eq 4 instead of
Ay, BRya- replacesER a,-

For reaction 4 the free energy of formation of a system of
specifiedX; andY from the reactants 8 and A, starting at
the encounter complex R and not including ther the partition
function terms, is

AG, = AY* + Dy(X, — 1) (28)
As a result of changes M, by reaction, the encounter complex
P, consisting of (A, B*, Ay, is reached from R. For the
corresponding free energy of formation of the system defined
by (Y, Xy) from the products, starting from the configuration P,
we have

AG, = Ao(1 = Y)? + DX, (29)
As before Ao andQ' can vary with position along the reaction
coordinate.

Once again, the minimization should be A, — kgT In
Q', subject to the constraint imposed by eq 7. However, to
avoid introducing at this point variational parameters Qo
we minimize AG; subject to the constraint imposed by eq 7.
We treatlo, as before, as more slowly varying than the other
terms, and sd doesn’t determine the Lagrangian multiplier

but, as before, can depend on it, and therebAGkJ/A. We
obtain

A AG®'\2
x — 7|
AG? 4(1 +2 ) (30)
wherel now is given by
A=A+ DAlB (31)

AG®' is again given in terms oAGgRp by the second half of eq
7, andAGgp is given by eq 27. We have

AG” =Bz a, — ERpa, T Dap t W — W, —
ks TIn oo

after cancellations and settin@, /Qy - = Qx /Qy - (for eq
4a) or=Q'/Qy .- (for eq 4b).

(32)

ket = Zetr eXp(—AGE/KT)

where AGEr is given by eq 34 ander containd® a ¢ that is
the distance between the centers of Aand AB in the TS.
Although we shall not need it in the present analysis, the
above comments are related to the rate constant of the back
reaction to eq 4, which in turn is related to a termolecular
“collision frequency”Zy. Following an argument similar to
that which led to eq 15Zr is (keT/h)q2aRa2/g® . and so
its value depends on the model assumed for the termolcular
encounter complex P. Since the possibilitiesdﬁf can vary
from g2 to g2, this Zer can vary by a couple of orders of
magnitude, depending on the model used for P. Introducing

values forgl}) andq{{), one findgCcd

(35)

(2)

L= (ﬂaZ)SIZZ (q(Z) = Quib

int

(36a)
or

Zier= An0’(n@®)""Z (o) = o2)
whereZ is the bimolecular collision frequency. Two of the
a’s in eq 36 are bending “vibrational” amplitudes, while one is
a stretching amplitude, as is the one in eq 36b. dl&on the
order of several angstroms, aads on the order of a tenth or

a few tenths of an angstrom.

Equations 34 and 35 are equivalent to those derived for the
concerted bond rupture/electron transfer derived earlier by
Savanf and also assumed in the work of EberddnThe
present description, which utilizes Figure 3, contains a more
detailed discussion of the various free energy changes.

Unified Description and Effect of §2 Interaction on ET
Rate. We consider next how, using egs 5a and 13b, one can
obtain a unified description for the reorganization energy for
crossing the dotted line in Figure 1. The equation reduces in
the appropriate limits to the\@ expression and to the concerted
ET/bond rupture one. We then apply it to show how an incipient
interaction of the §2 type could catalyze the outer sphere ET/
bond rupture process.

We first note that when there is a pure outer sphere
mechanism, i.e., no incipieny3 interactionx; is so large that
theXzin egs 5 and 6 can be replaced by zero. One then obtains

(36b)

We consider next the rate constant. Following the argumentsegs 28 and 29, upon observing that th&®' for the S2

that led to eq 15, we obtain

ker = Z[Q'/Q(0)] exp(~AGE/ksT)

whereZ is the relevant “collision frequency” betweenBand
A,,200 AGEt is given by

(33)

AGOI2
42

2, AG”
2

AGEr=w, +5

+

(34)

and/ is given by eq 31.

reaction,AGg,, equalsAGgr — Dy, whereAGgy is the AG*

for the ET reaction. Thus, eqs 28 and 29 for the ET reaction
represent a special case of eqs 5 and 6, one wketends to
zero. Similiar remarks apply to eq 34 f&AGET being a special
case K, = 0) of eq 16, when one uses the above relation
between theAGEr's and notes thg; becomes very small for
the ET (largeX,) system.

We next consider how an\3-type interaction might catalyze
an ET reaction, by reducing the reorganization energy barrier.
The free energy surfac&(X1,Xo,Y) andGp(X1,X2,Y) are equal
on the TS dotted line in Figure la, for any given valuexef
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We minimize AG; in eq 5 with respect t&X; andY at a finite a suitable variational transition state theory would yield the value
Xz, subject to the constraint in eq 7. We again introduce a (unimodal case) or values (bimodal case)Xfand hence of
Lagrangian multiplier, denoted now loy. One findsY = —m, AS(X2) andAHT(X2). When most of the flux density passage
Xy = m+1, and—(2m + 1)Aer = AGET — 2D2X,. The fj- occurs in the ET path region, it would yield the most probable

(X1 X2) at this value ofX; and Xy, given by eq 13b, is then  value of X, for catalyzing the ET reaction. ThaHT(X;) —
subtracted, since thj§; is resonance energy at the crossing of TAS(X;) function provides insights into the question of
the two surfaces at the givexy. In this way we obtain the unimodality vs bimodality of the flux density for crossing the

barrier for an ET reaction at a finité;: dotted line (TS).
AGKXy) — Bj(X)) = AG(X,=0) — DXy(1 + AGeY/Agy) + IIl. Applications and Discussion
DZXZZ;LSVZI’IET — (:DiyD) A 2%,[1 — (AGY; — We consider several applications of the above expressions

in this section: (i) relation of self-exchange and crosg S
reactions, (ii) relation between ET angZSrate constants, (iii)
entropies of activation of the two reactions, (iv) effect of driving
force on the rate constant, and the topic of linearity okl
vs B plots. We also consider a number of other topics including
numerical results, some remarks on computer simulations, and
nonequilibrium polarization.

Cross-Relation for Rate Constants. The identity reactions
corresponding to the “cross-reaction” 3 are

2X,D,)ierl} (372)

where we note that;j(X,;=0) = 0 and thatls,, = Aet + Do,
and soAGE, + As2 = AGET + At
At small X, the Xz2 term in eq 37a can be neglected, and
since 1+ AGgr/Aer is positive (except in any “inverted” region),
the second term in eq 37a leads to a lowering of the ET free
energy barrier, as does the last term. This lowering is due to
the presence oK, i.e., to the proximity of Bto A,~. The
possibility of there being somen3-like interaction in an ET
reaction has been suggested eatfiéf. In eq 37a there are two
effects of this nature. _ _
The value ofX; that causes the maximum lowering of the A, —B+A, —A;, +BA, (39)
ET barrier is the value at thexyd TS: Minimization of the ) )
second term in the right side of eq 37a shows tisto be From eqs 12, 13, 16, and 20 for th@ZXSreaction, it follpws
Yy(As2 + AGR)As2. However, such aiX, would lead to approximately that the rate constants of the cross-reaction 3 and

A,—B+A, —A, +BA, (38)

the K2 reaction 3 rather than to the ET reaction 4. the identity reactions 38 and 39 are related by
To calculate th_e reaction rate using eq 3_7551, it is necessary to 12 (kll 22 K2 )1,2 (40)
have an expression for the ratio of the partition function of the 2 = \Kg 2Kg ohg 2
TS to that of the reactants. (There is also, for the ET case,
some decision to be made for thﬁt) in eq 32 for AGgp.) when the difference of square roots in eq 13d, and the quadratic

Examples of this partition function ratio were given above for terms in eqs 13d and 16, can be neglected. In eq 40 the 12
the two limiting cases. In general, as in all applications of TS superscript refers to the cross-reaction 3, and 11 and 22 refer
reaction rate theory, some estimate must be made for theto the self-exchange reactions 38 and 39, Wl‘ﬁgg refers to
behavior of the coordinates in the TS, namely whether they are the equilibrium constant of reaction 3.
vibrations, hindered rotations, or rotations, based on a description If the quadratic terms in eq 13d and 16 are included, an
of the relevant parts of the potential energy surface for the solute additional factor enters into eq 40, just as an extra factor occurs
inthe TS. Equations 20 and 35 are limiting cases. When mostin the cross-relation for ET reactiof. Equation 40 has been
trajectories cross the TS, instead, in some region between thoséested for various reactiot$, methyl radical transfers for
two paths (arrows in Figure 1a), the three coordinates giving example, with A and A being arylsulfonates (no charge
rise to thequi,® in eq 20 may be, instead, hindered rotations, transfer); and has been tested with various quantum chemistry
and we simply write the partition function gg3(Xz). The latter calculations (with an additional quadratic term included, though
reduce toguip® for the pure §2 path and tay@ for the pure it is often small?* When eq 40 is fulfilled for §2 reactions,
ET/bond rupture path. We have it suffices in any analytical or numerical calculations to focus
only on the identity reactions 38 and 39, a considerable
K= Z(Gie(X0)/0o0)® €XP([—AGHX,) + Bi(XlksT)  (37b) simplification. It also serves to distinguish between thermo-
dynamic and kinetic (or “intrinsic®) effects on the energy
where AG{(Xz) — Sij(Xo) is given by eq 37a. Th& is also a barrier. Also, there is the well-known advantage that an

function of X, a relatively weak one, ranging fro#,, at X, interpretation or understanding ®f identity reactions then

~ 1/2 toZer at X, =~ 0. The appropriate value o in eq 37b provides one of th&(N — 1)/2 Sy2 cross-reactions.

is obtained by maximizing Itk with respect toX,. Equation Relation of ET and Sy2 Rate Constants. In experiments
37b fork yields the appropriate limits of eqs 20 and 35. the reactions between aromatic radical anions and alkyl or other

The X, effect, i.e., a large enougK, that reduces the ET  halides have been extensively studied and have frequently been
barrier but not so large that the reaction would become mainly assumed to have ET rather than2Smechanisms. For ap-
Sv2, has implications for aAH™ and AS' correlation. These  preciably sterically hindered RX’s the absence of inversion has
guantities are obtained fromG' using the standard thermo- been confirmed® while in others inversion is a variable
dynamic expressions. We u3g as a variational parameter. componeng?® The rates of such reactions, e.g., of egs 1a or
The AHT(X2) and AS(X,) vary in opposite directions witb, 1b, have been compared with those whos@ Sharacter is
as one moves from large;B\ distances [largeAH'(X,) and a uncertain, but which have the sarfe for the attacking anion
less negativeASf(Xy)] to smaller AB distances (smalleAHT A, for a given RX. That is, A is different for the two
and more negativAS') along the dotted line. For any reaction reactions, but it€° is the same. When the rate constants are
the most important crossings of the TS hypersurface are thosecomparable, it has then frequently been presumed that the tested
that occur at the minimum (or minima) AG'(Xy), i.e., at reaction is of the ET-type, eq 1, rather thag2Sreaction 2.
[AHT(Xp) — TAS!(X))/0X2 = 0 along the dotted line. Thereby, For rate constantker of reactions of aromatic anion radicals
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with tert-alkyl halides, Sal@nt obtained excellent agreement

between the experimental data and his equations (the present

egs 31, 34, and 35) and quite good agreement for othex(d
see) alkyl halides!® the experimental barrier now being roughtly

Marcus
Fe(“0") + RX — Fé'R™ + X~ (43)
Fe(l)+ RX—Fe"R™ + X~ (44)

0.1 eV lower than the calculated value, perhaps reflecting someThey also studied the ET reactions between RX and aromatic

Sn2-like interaction that catalyzes the ET/bond rupture reaction
and, in addition, somex2 reaction path.

In the experiments of Lund and co-work&fsthe reactions
of a carbanion, the enolate anion of 4-methoxycarbonyl-1-
methyl-1,4-dihydropyridinelC below) have been studied and

anion radicals. When the alkyl group in R was not sterically
hindered, the @ reaction of the Fe porphyrins with RX was
faster than the ET reaction by approximately 2 orders of
magnitude: The lok vs the E° curve of the electron donor
(the Fe porphyrin or the aromatic anion radical) was roughly

compared with the attack of the same RX by an aromatic radical parallel to that for the aromatic anion radical. To further test

anion of the sam&°. TheDa,s appearing in all the equations
is the presently unknown dissociation energy of the reaction
IR— 1"+ R:

COCHs; R CO CHg CO CHg
@ ’ ' R.
D
N N A,B N
I | | (41)
CHj CHgz CH3

I- IR 1
The experiments were performed with R’s such as admantyl,
neopentyltert-butyl, secbutyl, n-butyl, and ethyl. In reactions
with sterically hindered alkyl halides tHés were similar to
those with aromatic radical anions of the safis,3 suggesting
thereby an outer sphere ET mechanism for those reactions o
I~. The stabilization of the TS was large, on the other hand,
for the least hindered systems. For example, for the ethyl
bromide system, the ratio of rate constakig/ker was about
250030

We compare the expressions kg, andker, using for brevity
the two-interacting-statesy3 model, and consider reactions with
the same AB but with different A's having the sam&°. From
the equations for @& reactions and those for ET reactions we
obtain, in the linear expansiofNGRr|/A < 1) regime,

Ko Zaefa)
ket — Zer\Ohot
AT =% Dag (VlD,'AlBVzD'AZB)llz
s e s KeT (42)

using eq 13c and so not using the approximation of neglecting
the difference of square root terms in eq 13d. (If the two
yiDj’s differ considerably, the approximation of replacing
their geometric mean by an arithmetic one becomes poor.)

eq 42 forks/ker adequately, it will be necessary to know or
estimate the dissociation energy of thé'Re or F€''R~ bond

in egs 43 and 44 and to make some estimate ofytlseand
Di’'s. In a later section we make some estimates for other
reactions.

In the above data in ref 15 the difference in the rele\E&rdg
was zero, and so Da g is approximately constant for different
Fe'R’s (i.e., different B’s in reaction 3) which do not involve
sterically hindered alkyl's, then the vertical difference of the
two In k s B plots should be constant (upon neglecting the
guadratic term). The constant vertical difference in the plot
indicates, as Saeat and co-workers have not&€tthatDa,g is
approximately independent of B, for B’s that do not cause steric
hindrance. They also noted that there are the two opposing
effects influencing thekg/ker ratio: (1) a more restricted
transition state for the & reaction and (2) a lowered energy
factivation for &2, because of the bond formation. The two
effects are present in eq 42.

An analogous study is that by Wald@who studied an &
reaction between the cobalt(l) form of vitamin£and various
alkyl halides: n-butyl iodide, bromide and chloride, ethyl
bromide, and benzyl chloride.

Co +RX—Co'R+ X~ (45)
For these various halides tkef the §2 reaction was a couple
of orders of magnitude faster than its ET counterpart (aromatic
anion of the sameE®).2’ If the Dco'-r is approximately
independent of R, such a parallelism is consistent with eq 42,
and once again a knowledge Bt4'-r and ofy; andDj in eq
13 would be helpful.

Another comparison of interest is the ratiol@f/ker when
the Ay in reactions 3 and 4 is varied at fixegAand B. From
the equations for ET reactions and fq§2ZSreactions we again
obtain eq 42. Experimentally, in the reaction of anthracene
anion radicals with 2-octyl halides the ratio of inversion/
racemization (and sks,./ket) follows the order Cl> Br > |8
and in the same order for the reaction of anthracene radical

It may also be necessary to include in some cases the@nions with methyl halide. This order is the one expected
quadratic terms that were present in egs 16 and 34. In thatffom €q 42 from the relative bond strengtbgx and (for a

case there will be, as noted earlier, additional factors, on the
right side of eq 42, when theAG®'|/A’s becomes appreciable.
TheA§" — 23**in eq 42 is expected to be positive, because of
the larger charge separation in the TS of the ET reaction. To
interpret the data in ref 3a, the energy exponent in the ratio
ksyo/ker would need to be only about 5 kcal mél On the
other hand, in a Finklestein reactiéf®1~ + n-BuBr — n-Bul
+ Br~, the ratio ofkso/ket is estimated to be 4 10%°, which
corresponds to a difference in free energy barrier of 29 kcal
mol~L. In the next section we estimate the pre-exponential
factor in eq 42 to be about 310, i.e., about 100.

Savent and co-workef&<15studied the §2 reaction of Fe-
(“0”) and Fe(l) porphyrins, prepared electrochemically, with RX,
where various alkyls were chosen for R.

choiceDj = D;) they; discussed later. The contribution of the
Snv2 mechanism for the 2-octyl halides Was 8, and 11%, and
for the methyl halides it wd<5, 77, and 97% for RI, RBr, and
RCI, respectively.

Entropies of Activation. We consider next the entropy of
activationAS' obtained from the transition state theory expres-
sion?0a

kBTe—AGT/kBT _ ke T — AH'/kgT .~ ASf/ks

k=h he e

(46)

whereAHT andAS' are, in turn, obtained from the thermody-
namic expressionAH" = d(AGYT)/3(1/T) andAS' = —9AG'/
oT. Thereby,
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+ 3 In(k/T) In ref 3 the least negativaS' for the ET reactions was about
AH' = _kBW =B~ kgT (47) —9 eu, (in some cases-P eu less) and the most negati&d€"s

for SN2 reactions involving1 were about—22 eu. These
and results agree with the above estimates. It would be helpful

helpful to have direct data on tHE°/3T term in egs 50 and

AST/kB = In(khWkgTe) + EJT (48) 51 to see how small it is.

However, many of the largely ET/bond rupture reactions in
since the activation enerds, is defined by—kg 9 In k/o(1/T). ref 3 have aAS' that is intermediate in value between the values
Equation 48 was used by Lund and co-worRéesobtainAS'. of —9 and —22 eu. For example, the reaction between an

We next use results from some gas phag2 ®actions to  anthracene radical anion anebutyl bromide was investigated
estimate the pre-exponential factor in eq 20. For such a reactiongyer a very wide range of temperatures50 to 50°C and for
whenAS® = 0, we can writek = Z(qyin/Gro)® eXp(—AU/kgT), a number of other reactions, and showetigi of —16 eu. The
whereAU is a term essentially independent of temperature. We ASf for the reaction wittsecbutyl bromide and with a number
write thisk asC'(T) exp(~AU/kgT). WhenC'(T) varies asl" of other halides also had about that value. If we can neglect
and the rate constaktis also written ash exp(—Ed/keT), with the dAE°/dT due to an approximate cancellation of anion

Eadefined as above, it follows that= C'(T)e". We now apply  solvation effects, then thiaS' may reflect steric effects and
this expression to gas phase reactions, so as to estifgate another factor mentioned later.

(quib/drey)® from data on those reactions.
Typical pre-exponential factors, for bimolecular metathesis
reactions (tight TS) involving polyatomic species, e.g.sCH
HR — CHy + R, are® about 186 M1 s71. Sinceq varies
asTY2 while Zs, varies asT*?, n is then—1, if qui, is roughly
unity. ThenC'(T), which equalsAe™, is about 18 M~1 s71,
and we note thaC(T) is Zs(Quin/dro)®. If for a loose TS
reaction the pre-exponential factor in eq Zgy, is about 18!
M~1 s71, the ratio of the pre-exponential factors in eq 42 has
the value of about 100, as mentioned in the previous section.
We turn next to theAS' in eq 48. When we write thi in
eq 20 or 35 in the fornk = C(T)exp(—AG*/ kgT), with C(T) O
T™, it then follows from the definition o, thatE, = AH* +
nksT, whereAH* = 9(AG*/T)/a(L/T), and that

The details of the temperature dependence of the ratio of
inversion/racemization, i.e., &k /ket, are of particular inter-
est: From the study of the ratios for the reaction of anthracene
anion radicals with 2-octylhalides (> Cl, Br, I) at 25°C and
at —50 °C, one can estimate from the dathat the difference
in activation energies of the ET angBreactions is between
1.6 and 2.9 kcal mot, instead of the 5 kcal mot mentioned
above for a different system. The ratio of pre-exponential
factors was betweeca. 1 and 15, instead of being about 100
or more. In this case a bimodal characterization of the ratio of
yields of §2 and ET mechanisms seems less attractive than a
unimodal one, in which the ratio of fluxes ending up a2 8r
as ET products would be somewhat energy-dependent though
presumably not as much as in the bimodal case. In the following
we consider first a choicB{ = D;. Elsewhere, to compare with
an impressive correlation of Pellerite and Brauman (ref 12,
WhereAS* — —3AGH 4T, 1983), we consider instead a different choice, one involving

When the dependence of the on T is neglected (the Ea:. . L .
dependence is expected to be weak, as in the usual ET's) and Another consequence of a unimodal flux density is a possible

the quadratic term in eq 34 is neglected, eq 49 yields for an ET continuous correlation be_twee_nH* and AS' over the above
reaction range ofAS"s within a series of related compounds. We have

already noted the limiting situations, often referred to in the

AS = AS* + kg IN(C(MksT) + (N — ks (49)

o 1 9, . . literature, of a pure @& reaction having a very negativeS'
ASer = kg In(Zerhke ) EkB a_T(EAz'/Az‘ EAl'/Af) and a relatively lowAHT, and a pure outer sphere ET reaction
19 having a much less negativeS' and a relatively highAHT.

5 3T(Wr +w,) (ET,loose TS, linear expansion) (50) ajong the TS dotted line in Figure 1 between the ET ap@ S
arrows one expects the potential energy to decrease steadily as
upon using egs 34 and 35 and, for the moment, neglecting anyone moves from the region where thgBAdistances are large,
entropy change associated with the partition function terms in partly because the splitting of the two surfaces is increasing

egs 32. We return to that point later. and partly because one is also entering a more bonding region.
Similarly for the SN2 reaction, using the term lineaAG*’ Only around the @ arrow is a saddle-point expected to appear.
in eq 16 and neglecting any dependence @in temperature, If the flux density is unimodal, and if one characterizes the
egs 20 and 49 yield various regions of the dotted line in Figure la (and more
) 1 generally of the TS hypersurface) with some parameter, such
Asg@ =|kg In Zsuz(lb) L - kg — as X,, the opposite trends okH' and ASF with X, described
Orot) KT earlier would lead to a smooth correlation between the two for
19, . 19 a given reaction series. In particular, it seems to occur in the
2 3T EAzA, — Eaa ) = 5 57w T W) reaction of thel ~ in eq 41 with alkyl bromide&2 but thus far

(tight TS, linear expansion) (51) there appear to be only three sets of points on the line, two
with ASf =~ —21 to —22, two withAST = —16, and two with
From eq 51, apart from th@E°/dT term, which is largely =~ ASf = —91t0—9.5 eu. TheAS' for reacting RBr’s range from
related to any entropy change associated with the solvationthose for unhindered{22 to —22 eu) to semihindered-(16
change from A~ to A;~, if we neglect thedw/dT terms, which eu) to hindered<{9 to —9.5 eu). It would be instructive to see
are expected to be minor unless both reactants are charged, theif experimental points can be obtained between the above three

from Zgr = 101 M1 51 one obtainsAS.; = —9.5 eu.  sets.
Instead, from eq 51 and the above value’, M0 s™2, for Zg»>- A related aspect of this temperature/ds’ behavior concerns
(qvin/dret)®, €q 51 yieldsA J , = —22 eu. We next compare the linearity of the Ink vs 1/T plot mentioned earlier for the

these results for the ET andy&reactions with the data. reaction between anthracene radical anionsradtyl bromide
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over the wide temperature range 60 to 50°C.2%2 There if the Sy2 products are measurable, how the ratio QR/ET

was no indication of a possible change of mechanism, i.e., no products changes over the large rangeE®E studied. This
change of slope, from ay@ low pre-exponential factor/low  reaction of aromatic anion radicals witbrt-butyl bromide is
activation energy behavior at low temperatures to a higher ET one where very little & contribution is expected.
pre-exponential factor/higher activation energy behavior at high  As noted above, there is some controversy concerning the
temperaturé. The result is consistent with that described in legitimacy of plotting the highk points on the same plot as the
the previous section on the inversion/racemization ratio for the others. Should the points prove to be legitimate, then the
reaction of anthracene radical anions with optically active 2-octyl remarks made ogn? at the end of the preceding section indicate
halides (namely, having an intermediate value of the ratios of that the pre-exponential factor would be higher than that
pre-exponential factors and of the difference of activation expected from eq 35, which does not take into account some

energies). These results, too, seem to favor a unimodal consequences of the;B bond extension. It would be useful

description of the flux density. However, a more detailed

to attempt to measure theS' at the highk end, to see if it is

analysis is needed, preferably supported with trajectories on aindeed less negative than in the mid#leegion.

realistic potential energy surface.

Comparison of the Numerical Results and the g2 Model.

We conclude this section with some remarks on the entropy |n comparing eqs 11 and 12 for the two-interacting-states model

term associated with thAG®" appearing in eq 32 and which
would make a contributio,AS™ to the entropy of activation
AS'in the linear regimeAS’ = —9AG®'/9T). The difference

of E®’s contributes toAS™ a component principally related to
the solvation entropy of the product ion Aminus that of A~.

If the o in 32 is largelyq®, with small amplitudes, as we
have tacitly assumed in writing eq 50, then the last partition
function term in 32 will make relatively little contribution to
AS”. If, however, theqi(ft) is qfﬁz or involves very floppy
hindered rotations, then the term will contribute a positive
contribution toAS™ and hence taS'. The idea that developing
rotations might contribute taS' was suggested by Szamat2°

It would be very useful to determine th€S” of some of the
reactions, so that its role in affectigS' could be studied more
closely.

Effect of Driving Force, —AG°. There have been many
studies of the effect of driving force, or more specifically of
the effect of theE® of the reactant A" in eq 4, on logker.
Such plots are meaningful if the in eq 34 does not change
with A,~. Similar remarks apply to the theyS reaction 3¢

for the 2 reaction with some numerical results, we focus first
on the identity reactions, for whicAG®' vanishes.

We compare the \2 model with data on gas phase and
solution phase & reactions, initially for the group VIl members
of the periodic table. For the identity reactionBA+ A~ —
Ai~ + BA;,whenBisCHand A" isF, Cl-, Br-,and I, the
solution phase barrieris*dabout 32, 27, 24, and 22 kcal mé|
respectively, while the gas phase barrier is 13(?), 10, 11 and
6(?) kcal mot1.124d (These gas phase barriers are from the
bottom of the close contact ierdipole well to the barrier
maximum?d) The differences are 19(?), 17, 13, and 16(?) kcal
mol~1, respectively. In the two-state model this difference is
Ao/4, thedo being evaluated at the TS geometry. An independent
measure of a related quantity, the single-ion vertical reorganiza-
tion energy, denoted bj(Ai7), is availablé? from threshold
energies of photoelectron emission by ions in solution, using
eq 21. From the datafor F~, CI-, Br—, and I, Ao(Ai")/4 is
estimated to be 14, 10, 9, and 8 kcal mglrespectively. One
expects thelg/4 for the A~ + CHsA; identity reaction to be
between 1 and 2 timek(Ai")/4. The values cited above are

In this sense, eq 40 is more general than any relation that doegoughly consistent with this expectation.

not allow for any differences iz, (and thereby inl) in a
reaction series where,A is varied.

Typically, the slopes of the-kgT In k vs B plots of the ET

We turn next to the barrier for the gas phase identity reactions,
which is (0.5— y;)Dag, according to eq 16. The ratio of the
experimental gas phase barri@r§to Dag’s #dis 0.12(?), 0.12,

reactions have been near the expected value of 0.5, or0.15,and 0.11(?) for A =F~, CI7, Br-, and I, respectively.
lessld316.26hecause the reaction is estimated to be typically Thus, the two-state model leads tgia= 0.38, so indicating a

downhill. One puzzle, or apparent puzzle, has been the behaviorvery large effect of the “resonance” interaction of the (multi)

of the Inket s B plot for the reaction of aromatic anion radicals
with tert-butyl bromide. It is linear rather than being curved
(parabolic equation) over a substantially larger rang&Eoé
than was expectet. A pre-exponential factor of & 102 M1

s 1 and4 of 90 kcal mot?! were used to calculate the expected
parabolic relation, but even if a factor of #*M~1 s7 and (to
yield the same rate constant) the largasf 100 kcal mol were

states to lowering the energy barrier. The ratio of the
experimental gas phase barrier to gg for these reactions
(0.5 — ¥) is seen to be on the same orderlQ%) as for
reactions involving neutrals.

Applying next the above arguments tqiSreactions in
solution, if we assume that the barrierda. 1.5 Ao(Ai7)/4 +
0.12Dps, We obtain 34, 25, 22, and 19 kcal méffor the F-,

used, a linear behavior would still be surprising. Curved plots CI~, Br—, and I reactions. These values are, as expected from

are well-known in the literature for other systems, for example

the choice of the two parameters, close to the experimental

for Fe(cp»*t© undergoing long-range ET across an adsorbed values of about 32, 27, 24, and 22 kcal mol

alkanethiol monolayer to an electréand in various homog-
enous reactions.

There are two view’-18in the literature on the significance
of this linearity or apparent linearity for the above reaction, in
part because the data at the higbnd of the plot were obtained

We consider next some jAs, such as OH and CN,
describeF as being poor leaving groups. (It has been pointed
out* that terms such as leaving group ability and nucleophilicity
are replaced, in the language of ref 7b and 11, by other terms:
intrinsic barrier, thermodynamic driving force.) The attacking

by a different method from the others. We also note that the atoms are members of groups+VI in the periodic table,

AS' data indicate a mainly (or entirely) outer sphere ET
mechanism, but the experimentaS’ seems to become some-
what less negative at the loweend?%2 (Data on at the higl-
end do not appear to be available.) If this effect is real, it could
contribute to the unexpectedly high values at the loend,

instead of the halide group VII. The halides tend to have lower
barriers relative to the dissociation energies. For example, for
CH30~, NC™ (C attack), CHCO,~, CHsS™, and HCC, the
ratio of experimental gas phase barriersDigg is (roughly)
0.35, 0.29, 0.18, 0.32, and 0.35, respectively. Each of these

though not enough, a factor of 7 instead of the 100 expectedratios is substantially higher than the average value for the

from a quadratic relation, eq 34. It would be helpful to know,

halides. They; defined by eq 13 is seen to be 0.15, 0.21, 0.32,
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0.18, and 0.15, respectively, values that on the average are mucltd.11 and 0.065. Once again there is a considerable difference

smaller than the 0.38 average for the halides. (The@i-,

between the A’s of group VIl on one hand and those of groups

with its more delocalized electronic structure, may be a special IV and VI on the other, and even a significant difference

case.)

between groups IV and VI. The valuesygffor the members

We consider next some reactions in solution for which there of groups IV=VI, obtained by equating the above ratios to 0.5

are data on anas andAo(Ai"). For OH we estimate the
value of Ao(Ai™) from photoelectron emission threshold ener-
gieg?to be 37 kcal moil. For CN™ thelo(A;") estimated from
data on charge transfer spectfa,using the correlatioi#?
between them and threshold energies, is about 44 kcat'mol
In the two-interacting-state model if one had assumedig-5
(Ai7)/4 + 0.12D4,, the calculated barriers would be 24 and
~30 kcal mot?, which are much lower than the observed values
of 42 and 52¢ Thus, the parameter; again has a value for

— i, are~0, 0.07, 0.14, 0.21, 0.27, 0.24, and 0.29, whereas
the values for F and CI” are larger, 0.39 and 0.44. Thegés

can be compared with those estimated from the experimental
Sw2 gas phase barriers in the preceding section. For group VI
the average here ¢f of about 0.25 compares with values there
of a little under 0.2, and a value in this range might be used as
a rough estimate in applications involving7s of groups I\~

VI

Remarks on Computer Simulations. In a system with many

these non-halide systems that is smaller than that for the halidescoordinates, one task is that of finding the transition state

A y; of 0.16 instead of 0.38 yields 45 and 50 kcal miolor
the OH and CN reactions, respectively, which are close to
the observed 42 and 51.

hypersurface, and thereby a suitable reaction coordinate. Inthe
case of weak overlap electron transfer reactions the energy
differenceAU between the products’ and the reactants’ potential

We consider next some cross-reactions, using eq 42 butenergy®3! has been a useful reaction coordinate and has

recognizing that the higher terms would be needed wheG%3,
either for §2 or ET or both, becomes appreciable. The
Finkelstein reaction, X+ CHsY — X CHsz + Y, has, as noted
earlier an extremely high ratio & o/ket, ~10?°. There appear
to be three contributions to this effect: (i) TBgg's are large
for the alkyl halides, leading to a large stabilization of th S
product. (i) The comparison of they® reactions is with
reactions of aromatic radical anions, of the sa&fginstead of

permitted the definition of the transition state as a particular
hypersurface in the spaé@333 However, in atom or group
transfers particular care is needed. This energy difference can
be a misleading coordinate, not so much near the TS, where
the AU between the zeroth-order states is zero, but away from
the TS, for example if the shape of th&s; plot vs the reaction
coordinate is being investigated, as it often is.

Such a difficulty can occur when the contributide of

halide ions. The aromatic anions contribute a substantially only the i, xo) terms [U(xy,x2) for products minusJ(x,xo) for

smaller amount than halide ions ig/4. TheAq for the self-

reactants] is not monotonic along the expected reaction path in

exchange reactions of aromatic ions self-exchange reactions hashe (x;, x,) space. (Such a situation appears to have occurred

been estimaté@i?®to be about 15 kcal mot, corresponding
to about 7.5 kcal mott for a single ion, while the single ion
Ao's for the halides estimated from the solution photoelectron
emission threshold energf@don data are 56, 40, 36, and 32
kcal mol?, respectively. (iii) From the gas phase barriers for
the identity reactions for X + CHzX — XCH3 + X, the y;
was estimated above to be very large when iX a halide,
namely, 0.38. This largg; for the halides leads to a consider-
able reduction of the energy barrier in a two-state model.
We consider next the reactions betwéemnd RX, compared
with the aromatic anion radicaRX reaction. Theks/ket ratio

at small AB distances in ref 33, perhaps arising from the
difficulty noted there of accurately describing theBA---A;
repulsion.) To avoid this problem, and to learn aboutihim
the variousAG, and AG, expressions away from the TS, one
can introduce there a new coordinat¥s, the difference inJ
due to all but the abovex{, x;) terms, and calculat&,-
(X1,%2,AUs) and Gy (x1,%2,AUs) as functions ofAUs, X1, andxo.
From this informatiomy can be obtained: at; = 0, x, = o,
Gp — Gy equalsly + AG™, so yielding/o for the reactants,
while atx; = o, X, = 0, G — Gy equalsly — AG®, so yielding
Ao for the products. Thes's in the reactants’ region and in

was considerably less than in the above Finkelstein reactionthe products’ are unambiguously known, since the two distinct
case. A reason is the (probably) much smaller bond energy charge distributions are known. However, in the TS region

andy; of IR, as compared with the halied&R bonds formed in
the Finkelstein reaction. Th& was also more favorable to

guestions such as the validity of a two-state approximation arise
and complicate a two-charge distribution description (next

ET than in the preceding case, since now an aromatic anionsubsection), particularly whef is large.

radical is the attacking agent footh reactions.

In the case of the Fe(“0"), Fe(l), and Cattacking agents, in
reactions 41+43, the F8R~, Fd'R~, and CdR bonds are
presumably stronger than the ABonds, where A is an aromatic
group, sinceks,o/ke is substantially larger than unity. Turning
next to the reaction of aromatic anion radicals with skeEctyl
halides, theiks, /ker ratio is less than 1. Presumably this newly
formed AR bond in the {2 reaction is weaker than the one
with these metal groups.

Quantum Chemistry Calculations andy;. We have sum-

Some quantum chemistry calculations have been performed
seeking for a gas phase system specific transition state con-
figurations for &2 and ET reactions, (e.g., ref 34). The TS for
the ET reaction, however, has a much broader definition than
a saddle-point, because of the “looseness” of the TS. It would
be useful, therefore, to explore the entire TS region, e.g., the
dotted line in Figure la near and between th@ @nd ET
arrows. In the process, a broader definition of TS than a saddle-
point is used, and the solvent is included, using near the TS the
AU as a reaction coordinate. Perhaps it may be possible in the

marized in the preceding section some values of the ratio of Process to extend or examine some existing $ajectory

the experimental energy barriers of gas phag@ Blentity

studies in solutioff to include the ET portion of the TS and

reactions to dissociation energies. From them typical values the region in between. The question of whether the flux density

of y; can be obtained for the different groups in the periodic
table. In some quantum chemistry calculations of Wetfal.?42
the ratio of the calculated energy barfféto the experimental
dissociation enerdy for H=, HCC~, NC~ (C attack), CHO™,
HO~, HOO, and HS is 0.55, 0.43, 0.36, 0.29, 0.23, 0.26, and
0.21, respectively, while those for the halides &d CI are

across this TS is bimodal or unimodal could be explored, for
example.

We also note that simulations can shed light on the relative
importance of the various terms in the equations AG3;, as
well as in testing some empirical form such as that in Appendix
A, perhaps with a differenf; there for the electronic and
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solvation terms. The functional form of model in Appendix
A, or the corresponding form for neutrals, can be tested via
only its consequences, since a concrete definitiom of terms

of actual coordinates was not given or needed.

Nonequilibrium Polarization. We consider next the evalu-

Marcus

wherees and ey, are the static and optical dielectric constants
of the solvent. Thereby, the free energy barres. would

be €/4)(1/28; + 1/2a, — 1/IR)(€op * — €5 1), the well-known
expression fofg/4. More general continuum expressions, with
a more realistic geometry, could be used instead. Still, more

ation of the solvent reorganization energy portion of the energy generally, one could use a statistical mechanical calculation to

barrier to reaction, thé¢/4 in eq 16. We recall the origin of
this barrier, which is different from that due to a desolvation of
A, in reaction 3 or 4: The slow moving solvent molecules

obtainG®, andG;° (op), rather than a continuum expression.
For the present purposes, we only ndgdn the TS region.
If one wished to obtairl, for any other i, x2) value, e.g., for

cannot be appropriately aligned to the instantaneous positiona system in the encounter complex regRyrinstead of the TS,

of the electronic charge in#8A,~. Thereby, the set of nuclear

one could again use the above ideas to obtainthe For

configurations adjusts, instead, to some averaged charge disexample, in the configuration R the “0” charge density has a

tribution of the electrons in BA,~. One main problem is then
how to treat the correlation between the electrons iBAy~
and those of the solve. The treatment of that correlation,
together with finding the nonequilibrium distribution of positions
of the nuclei of the solvent, was the main focus in the electron
transfer theory1b

When the “frequencies” (energy level differences, in units
of h) of the electronic motion in A, and in the solvent are

negative charge onzand none on A In the “1” system, i.e.,
the A;"BA; system, there is a negative chargeon A; and
none on A. Thus in a -0 system, there is a charge @ oen

A; and+eon A, The two-center model fokg yields, using

eq 22,&2(1/2a3 + 1/23; — 1/R)(eop * — €5~ 1), which is the usual
expression fory. In a somewhat more elaborate treatment of
a “slow electron” in the AB A, TS, i.e., not a two-state model,
one would solve its one-electron Sc¢bioger, taking into

comparable, the attractive electron correlation is described viaaccount its instantaneous interaction of the electron with the

London dispersion forces (second-order perturbation theory).

nuclei and with the electrons of the solvent. However, for

In the present problem there are a variety of relevant electronic Systems with a largg in the TS region, this electron is not

“frequencies” of ABA,~. One electronic frequency in the TS
of A1BA,~ is that associated with the splittinge of the two
states there and is the frequeney= Ae/h for the electronic
oscillation that would occur in a time-dependent electronic
oscillation problem, A"BA, <= A;BA,~ or A;9-1B9A, <
A1B79A0~1 whered may be positive or negative. Another

“slow”, and a more elaborate and non-two-state description
needs to be explored.
IV. Summarizing Remarks

We have explored a molecular two-interacting-states model
(and in Appendi A a modified BEBO-like one) for @&

frequency, roughly speaking, is that associated with electronic yeactions of the ET type, have extended slightly a model for

transition within each A to an excited electronic state of A
the electronic “frequency” beindE/h. It is large and more or

outer sphere ET/bond rupture reactions, and introduced a unified
description of the two, as in eqs 37a and 36b. The question of

less comparable with the solvent electronic frequencies. Any pimodalys unimodal flux density for crossing the transition state

detailed treatment of the electron correlation should not be
confined to a two-state model, particular whers large. In a

more realistic description one would solve the many-electron
correlation problem directly, not making any two-state pre-

(hypersurface) is also discussed, together with some data that
may relate to this question. Estimates were made of entropies
of activation for two limiting situations (loose and tight TS),
and were also considered in relation to the data g8 &

judgement. However, except when the excess electron inconcerted ET/bond rupture paths. Variational calculations

A1BA;" can be regarded as “slow”, the problem is formidable. taking into account the dependence of the TS partition function
We recall here only a two-state model, in which we assume Q' on a variational parameter (e.¥) can be used to implement

in addition the electron to be “slow”. Using statistical mechan- the unified description. Other topics considered were the cross-

ical results in ref 37 and 22, based on a linear response relation, effect of driving force, leaving group, relative rates of

approximation [the quadratic dependenceYan eqs 5 and 6],
it will be recalled that the free energy of a nonequilibrium
polarization termio was given by eq 22. The “0” in eq 22

Sy2 and ET/bond rupture paths, and a possible expediting of
the ET/bond rupture by an incipien§ interaction. Various
numerical results were used to estimate a resonance energy

refers to the charge distribution of the solute which determines parametey;.

the distribution of nuclear coordinates of the solvent in the TS.
This pg is, in the TS state, approximately equale(oa, +

pA,) in a two-state approximation if electronic overlap is
neglected; pp, is the charge density if the electron were
concentrated on & or AB~; that is, thisoeg is distributed equally
between the Aand A regions. The “1” in eq 22 refers to the
actual charge distribution, which, in the present instance, for
the TS ispa, When the electron is in the vicinity of Aand is

pa, When in the vicinity of A. Thus, p1—o is approximately
Ya(pa, — pa,) in the vicinity of Ay and Yx(pa, — pa,) in the
vicinity of A,, for this case, where both,A and A~ bear a
single negative charge in reaction 3. TherebyDXorresponds

to there being a hypothetical charge -6&2 on Ay and —e/2

on A,

Purely for illustrative purposes an oversimplified two-sphere
model is next used for the present system, in conjunction
with a dielectric continuum modehAGL;. The expression for
G*'is then—(e%/4)(1/2ay + 1/2a; — 1/IR)(1 — es71) and that
for Gi™(op) is e¥4)(1/2a; + 128, — UR)(1 — eopY),
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Appendix A. Adiabatic Model

In his BEBO model for §2 reactions of neutrals, Johnston
obtained (in a more detailed molecular version) a consistency
with experimental activation energies to abet kcal mof?.

His method (constant bond order) is consistent with (and perhaps
motivated by) the fact that the activation energies of the
thermoneutral reactions are considerably less than the energy
of the bond being broken. The latter result could be construed
as implying an approximate constancy of “bond order” during
the reaction. In the extension here g2Seactions in solutions,
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a simple functional form, related to that in one version of kcal moll, whereas the energy barrier to reaction is about 26
Johnston’s approach, is adopted, but now no longer involving kcal moll, i.e., on the order of 10% of the suth. This
only bond energies. Electron affinities and solvation free percentage is higher for identity reactions for which iB A-
energies also appear, and the “bond order” is replaced by aA;~ — A~ + BA, the A~ is not a halide.

reaction coordinate. The three effectsi(i) in the Introduction The source of the repulsion term is seen in ‘Sans moded
are again included, the solvation effect (iii) via a partial for concerted ET/bond rupture, eq 29, as well as in eqs 5 and
desolvation. 6. Because of the correlated naturengfandn;, in eq A2 and
In a BEBO treatmeritof gas phase reactions the bond order because of the omission of a triplet repulsion term, it should be
of the rupturing bond in the reactants was denotechfthat stressed that one cannot assign theerm only to the AB
of the newly forming bond by, and the energy of the ;B bond: An increase in one bond length is accompanied by a
bond { = 1, 2) relative to vacuum by;. TheV; andn; were decrease in the other, because of the correlation. Instead, the
related by G in eq A3 is now only an empirical form, one which has several
advantageous features listed below. Correspondingly we treat
V,=Dn**P (AL) Nz as a reaction coordinate and no longer as a bond order. The
same remarks apply to the application to gas phase reactions.
where in the exponent; is a quantity whose value is in the One feature of eq A3 is that when is close to zero the
vicinity of zero/ typically around 0.1. The; should be greater  fractional change irG is relatively small, as observed experi-
than zero, in order that; not be larger in magnitude thd in mentally in some reactions (particularly those of halides). A

the interval O< n; < 1. Johnstohdefined the reaction path by  second feature is that eq A3 incorporates three effects mentioned
introducing a constant bond order approximation, namely, earlier: with p; close to zero, the terms yield the partial

desolvation which accompanies the delocalization of charge over

n+n,=1 (A2) the entire ABA,~. The presence of thBag terms in eq A3

yields an increase in overall electronic energy, paralleling the
the physical justification for the latter being that implied earlier, repulsion in eqs 5 and 6, and tBge terms yield to an expected
namely, there is little change of electronic energy along the weaker electron affinity of ABA,~, compared with that of the
reaction path. In ref 7a a triplet repulsion between the distant smaller A~ or A,~. A third feature is that for identity reactions
groups, A and A, was also included and played an important (A; = A;) it makes the barrier for the reaction in solution larger
role. When it is neglectegy becomes an empirical parameter than the gas phase barrier, as found experimentally and as
rather than being evaluat€édfrom spectroscopic data. The discussed later. (Thg terms in eq A3 are absent in the gas
energy of the system along the reaction path relative to that of phase reaction.)

the reactants is thev; + V, + Dy, since initiallyn, = 1 and The quantitie€a,, + ga,_ are related to the standard electrode
n, = 0. potentialsER ja,_ by

In the case of bond energies and activation energies for
neutrals, the smallness of the latter relative to the former in a Enr 90— (Bar t 00, ) =Ela — Eia- (A4)
thermoneutral reaction shows that fhén eq A1 must be close
to zero: With a TS havingy = n; = 1/2, and withD; = D Using the values oE, g, andE° for some known system, the
(thermoneutral reaction) the energy barrier-8Dy(1/2)"" + SUME,_ + ga,_ can be obtained from thgR s, for any other
D;, and so (1— 27") must be small and typicallg is on the system.
order of 0.1. In the present case,1fAB---Az)" involves The change of solvation from configurations appropriate to
additional changes besides bond energies. reactants to those appropriate to products is treated by the

Quantities relevant to the reactants in reaction 3 are the terms in eq A3, whereas it is treated by tfiderms in eqs 5
election affinityEa, of A, the dissociation energyas of AiB, and 6. The free energ along the reaction path is given by
and the solvation free energy of the ion"A— ga-. Their

H : _ 1+pi

contribution to the free energy of the system changes from G=-Y cn™ + nw, + nw, (A5)
—Da.g — Eay — 0a, for the reactants t6-Da,g — Ea;s — Oa,- i

for the products. Each individual term in the sum may be large,
and the sum even more so. The barrier to reaction is expectedwhere
to be substantially less than this sum, and so for this reaction

in solution one might consider modeling this contribut®of C =D, +E+g (AB)
the free energy by an empirical expression of a form functionally
similar to that in eq Al: D; = Da,g, E1 = Ea,., 01 = 0Oa,_, €tc., and thev terms have
been added to eq A5 to allow for the interactions amR (1
G=(-Dpg—Er.— gy )N, ™+ = 1) and at P\, N, = 1) and to interpolate between them.
! 2 2 . Typically, one expects for reaction 3 that = w,. Then the
(_DAZB - EA1 - gAl—)nz ” (A3) last two terms in eq A5 reduce ta,. However, that ap-
proximation is not made in eq A7 below.
The use of a singlgy; for all the electronic and solvation Equation A5 reduces to the desired initial thermal equilibrium

effects is an assumption that we have introduced in eq A3 only value at R and to the desired final equilibrium value at P. There
for notational brevity. A simple modification for the case in is also some mean van der Waals’ type solvation of the neutral
which differentp;’s are used for the solvatiog)and electronic A1B and of AB, but we assume it to be roughly constant during

terms (D — E) is given later. With this expression both gas the reaction, compared with changes in the usually larger ion-

phase and solution phase barriers can be treated. solvation and electronic terms.

In eq A3 thep; is different from that in eq Al but is again From the preceding equations we obtain, starting at the given
close to zero, and eq A2 is still used. For example for the Cl configuration R, the free energy chandé&, at any point g,
+ CH3Cl — CICHs; + CI~ reaction, theEa, Dag andga— are ny) along the reaction path. It includes changes in electronic

about 83, 84, and 77 kcal md| and so the sum is about 244 and solvational terms, but not in the@terms in its definition.
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The AG;, equalsG — (—G; + w;), and egs A5 and A6 then
yield

We consider next the interpretation of some experimental
results with the model. The difference in solution phase and
gas phase barriers in that modebjgpi In 2. A p; In 2 of 0.2
for this term would yield 21, 15, 14, and 12 kcal mbfor this
difference, for F, CI-, Br—, and I, respectively, compared with
the experimental values of 19(?), 17, 13, and 16(?), respectively.
On the other hand a value pfiIn 2 of 0.07 for the gas phase
barriers yields 13, 12, 10, and 9, respectively, compared with
experimental values of 13(?), 10, 11, and 6(?)p;lih 2 were
assigned an intermediate value, 0.11, rather than using two (0.2
for the solvation and 0.07 for the electronic contribution), the
solution phase barriers would be 34, 27, 24, and 21 kcat ol
which are close to the experimental values listed above, but
the above arguments suggest that the solvaipland the
electronicp; differ. The arguments made in the text regarding
groups such as OHand CN- would imply ap; of 0.18 instead
of 0.11. In particular, g of 0.18 instead of 0.11 would be
needed to obtain the observed 42 and 51 kcal ifdr the
OH~ and CN  reactions.

If different p;’'s were used for the solvatiop;f) and electronic
(pi®) terms, then eq A11 would still apply, but eq A12 would
now read

AG, = Y Cn(1—nM) + nAG”
i<T2

(A7)

where AG®' is given by eq 9b and the second half of eq 7.
We next determine the transition state by settidgs,/on;
= 0, subject to the constraint imposed by eq A2, i.e., setting

= 1 — n; wherever it appears. We obtain

Cif1— (1 +p)In"] —CJ1 — (1+p)n]=AG" (A8)
Whenn; = n, = 1/2, the first term in eq A5 is (1/3)Ci(1

— 27P). When this barrier is small relative to (1%, i.e.,

relative to the mean of the initial and final solvation plus

electronic terms, thep; must be close to zero, and we may

expand the first term in the right side of eq A7 about its value

atp = 0, as in ref 7b for gas phase metathesis reactions. The

above equations then yield

ApC(1+Inn)=AG" (A9)

AG,=— ) pCn Inn + n,AG”

i=1,2

(A10)

r
A= 2)PiDpp+Ear,) + P10, +

where theA in eq A9 indicates that the= 1 term is to be p‘j(DAZB + EAf) + pggAl, (A15)

subtracted from thé= 2 term. We could now proceed, as in

ref 7b, to simplify eqs A9 and A10 by symmetrizing them, s0 References and Notes

leading to a functional form forAG; similar to the tanh

expression there. Instead, we shall for our immediate purpose (1) (a) Eberson, LElectron Transfer Reactions in Organic Chemistry

SSpringer-VerIag: New York, 1987. (b) More recent analyses are given in:

expand the equations abayt= n, = 1/2. Upon writingn; =

(1/2) — x, np = (1/2) + x, and expanding the right-hand side of

eq A10 in powers ok, up to and including?, we haveAG; =
A+ Bx + Cx + ..., whereA = (1/2)[(p1C1 + pCo)in 2 +
AGEp, B = AG® + (p1C1 — pCo)(1 — In 2) andC = —(psCy
+ p2C,). To obtainx and hencen; andn, in the TS for any

AGgp, we can either make the same approximation to eq A

or, equivalently, minimiz&\G, with respect tox, yieldingn, —
1/2 = x = —BJ2C, and henceAG{= A — BY/4C, i.e.,

A AG” | AG
* 0~
AG =+t =t n2

(A11)

plus higher order terms. In eq A1l th&G°? is really an
approximation taB?, as described below. Thein eq A1l is
defined by

2=2In2)3pC, (A12)

Introducing the values fo€; and C,, we note that

C,=DpptEn,+0n» C=DrgtEs.T0y (AL3)

Eberson, L.; Shaik, SJ. Am. Chem. Sod99Q 112 4484. Eberson, L.
New J. Chem1992 16, 151. (c) Pioneering work in such applications is
given by Albery, W. J.; Kreevoy, M. MAdv. Phys. Org. Chenil978 16,
87. Albery, W. JAnnu. Re. Phys. Cheml198Q 31, 277. Kreevoy, M. M.;
Ostovic, D.; Lee, I. S. H.; Binder, D. A. S.; King, G. W. Am. Chem. Soc.
1988 110 524. (d) Eberson, LActa Chem. Scand 984 439.

(2) (a) Savant, J.-M.Acc. Chem. Red.993 26, 455. Savant, J.-M.

9 Tetrahedron1994 50, 10117. (b) Sa\ent, J.-M.Adv. Phys. Org. Chem.

199Q 26, 1. (c) Lexa, D.; Mispelter, J.; Saast, J.-M.J. Am. Chem. Soc
1981, 103 6806. (d) Andrieux, C. P.; Gallardo, |.; Sar, J.-M.J. Am.
Chem. Soc1986 108 638.

(3) (a) Lund, H.; Daasbjerg, K.; Lund, T.; Pedersen, SAtc. Chem.
Res.1995 28, 313. (b) Lund, T.; Lund, HActa. Chem. Scand 988 B42,
269; Acta Chem. Scand.986 B40, 470.

(4) (a) Shaik, S. S.; Schlegel, H. B.; Wolfe, Bheoretical Aspects of
Physical Organic Chemistry. They& Mechanism Wiley-Interscience:

New York, 1992. These authors also describe a two-state model, different
in its quantitative form from the present one. See also ref 13 below. (b)

Pross, A.Theoretical and Physical Principles of Organic Reatty;
Wiley-Interscience: New York, 1995. (c) Pross,Adv. Phys. Org. Chem.

1985 21, 99. (d) Reference 4a, pp 144, 155, 164, 166. (e) Reference 4a, p

167.

(5) Lewis, E. SJ. Am. Chem. S0d.989 111, 7576. Lewis, E. SJ.
Phys. Org. Chem199Q 3, 1. Lewis, E. S.; Douglas, T. A.; McLaughlin,
M. L. Adv. Chem. Ser1987, 215 35. Lewis, E. SJ. Am. Chem. So0&985
107, 6668. Niyazymbetov, M. E.; Zhou, R. F.; Evans, D.XdChem. Soc.,
Perkins Trans. 21996 1957. Cf. Lewis, E. SJ. Phys. Chem1986 90,
3756. Lewis, E. S.; Hu, D. DJ. Am. Chem. S0d 984 106, 3292.

(6) Savent, J.-M.J. Am. Chem. S0d.987, 109, 6788.

(7) (a) Johnston, H. SGas Phase Reaction Rate TheoRonald

C, also describes the change in electronic energy and solvationpess: New York, 1966. Parr, C.: Johnston, HJ.SAm. Chem. S04.963

free energy of the reaction which would accompany any actual 85, 2544. Johnston, H. $idv. Chem. Phys196Q 3, 131. (b) Marcus, R.

passage of an electron into the gas phase (apart from a smal{i«- hJ Ph_ysthetm(lfgs Zﬁ 891( v)vitchfa Aminor no;ati?_nal_ chagge[:n t#eJr
. 22a ere is denoted bp; there. (c) Cf. Agmon, H.; Levine, R. em.
surface potential term of 0-10.2 eV): Phys. Lett1977 52, 197. (d) In constructing potential energy surfaces using

A, +AB—e+A, +A +B (A14)

where e is in the gas phase ang As solvated. C, describes

the energy change in reaction A14 when the 1 and 2 there arejos.

permuted. We have noted that th&°'? in eq A1l is really
B2, defined above. However, typically, if = 0.1, the p:C;
— p2C2)(1 — In 2) in 8 becomes 0.08G* and may then be
neglected relative tAG*'.

semiempirical calculations, Sato’s work (Sato,JSChem. Physl955 23,
2465) plays a significant role; cf. ref 7a, pp-582).

(8) Hebert, E.; Mazaleyrat, J.-P.; Welvart, Z.; Nadjo, L.; Sawe J.-
M. Now. J. Chim.1985 9, 75.
(9) Daasbjerg, K.; Christensen, T. Bcta Chem. Scandl995 49,

(10) Marcus, R. ADiscuss. Faraday Sod.96Q 29, 21.

(11) (a) For example: Marcus, R. A.; Sutin, Biochim. Biophys. Acta
1985 811, 265; Comments Inorg. Chemi986 5, 119. (b) Marcus, R. A.
J. Chem. Physl956 24, 966. (c) Marcus, R. AJ. Phys. Cheml963 67,
853, 2889.



Theory of Rates of & Reactions

(12) For example: Wladkowski, B. D.; Brauman, JJ1.Phys. Chem.
1993 97, 13158. Pellerite, M. J.; Brauman, J.J.. Am. Chem. S0d.983
105,2672;J. Am. Chem. Sod98Q 102, 5993. Dodd, J. A.; Brauman, J.

I. J. Am. Chem. S0d.984 106, 5356. Dodd, J. A.; Brauman, J.J. Phys.
Chem. 1986 90, 3559. Staneke, P. O.; Groothuis, G.; Ingemann, S.;
Nibbering, N. M. M.J. Phys. Org. Chenml996 9, 471. De Puy, C. H,;
Gronert, S.; Mullin, A.; Bierbaum, V. MJ. Am. Chem. Sod99Q 112
8650. Barlow, S. E.; Van Doren, J. M.; Bierbaum, V. M. Am. Chem.
S0c.1988 110, 7240. As pointed out by Brauman and co-workers, the

J. Phys. Chem. A, Vol. 101, No. 22, 1994087

Tanida, H.; Watanabe, Chem. Phys. Letfl995 246, 183. (b) Marcus, R.
A. J. Chem. Phys1965 43, 1261. An equation related to the present eq
21, with Ao given by eq 22, but for charge transfer spectra rather than
photoemission, is also derived there. (c) Relevant data on charge transfer
spectra of anions in solution are given in: Loeff, I.; Treinin, A.; Linschitz,
H. J. Phys. Chem1992 96, 5264.

(23) Eberson, LActa Chem. Scand.982 B36, 533. Ingold, C. KQ.
Rev. Chem. Socl957 11, 1.

(24) (a) Wolfe, S.; Mitchell, D. J.; Schlegel, H. B. Am. Chem. Soc.

calculations of the gas phase reaction barriers from the experimental dataj9gj, 103 7694. Donnella, J.; Murdoch, J. Rid. 1984 106, 4724, and

take into account the multiple transition states.

(13) A two-state model has been proposed fg2 $eactions in Shaik,
S.J. Am. Chem. S0d.981, 103 3692. Shaik, SNow. J. Chim.1982 6,
159. Shaik, SActa Chem. Scand99Q 44, 205. Shaik, S.; Hiberty, P. C.
Adv. Quantum Chem1995 26, 99. The ET and & mechanisms are

regarded (for example, in the last reference) as competing on the same; o

references cited therein. (b) Mitchell, D. J.; Schlegel, H. B.; Shaik, S. S.;
Wolfe, S Can. J. Chem1985 63, 1642.

(25) Daasbjerg, K.; Hansen, J. N.; Lund, Acta Chem. Scand.99Q
44, 711.
(26) (a) Daasbjerg, K.; Pedersen, S. U.; Lund,Adta Chem. Scand.
91, 45, 424. (b) Balslev, H.; Daasbjerg, K.; Lund, Ficta Chem. Scand.

potential energy surface along different reaction coordinates (FigureSthere).1993 47, 1221. (c) Jorgensen, L. V.; Lund, Kcta Chem. Scand993

The two-state model is also summarized in ref 4a.

(14) Bernardi, F.; Paleolog, S. A. H.; McDonall, J. J. W.; Robb, M. A.
J. Mol. Struct. (THEOCHEM)1986 138 23.

(15) Lexa, D.; Savent, J.-M.; Su, K.-B.; Wang, D.-LJ. Am. Chem.
So0c.1988 110 7617.

(16) Savent, J.-M.J. Am. Chem. S0d.992 114, 10595.

(17) Lee, W. T.; Masel, R. 3. Phys. Chem1966 100, 10945.

(18) Wentworth, W. E.; George, R.; Keith, H. Chem. Physl969 51,
1791. Wentworth, W. E.; Becker, R. S.; Tung,RPhys. Cheml967, 71,
1652.

(19) Marcus, R. AJ. Chem. Physl1965 43, 679.

(20) (a) Glasstone, S.; Laidler, K. J.; Eyring, H.Bhe Theory of Rate
Process McGraw-Hill, New York, 1941. (b) In a bimolecular reaction

47, 577.

(27) Cf.: Walder, L., cited in ref 2b.

(28) Benson, S. WThermochemical Kinetigdohn Wiley: New York,
1976.qy is typically 1-10 andg, 10—100 (p 143). The data for the &6
average are given on p 156.

(29) Savant, J.-M. Private communication.

(30) Chidsey, C. E. DSciencel991, 251, 919; Ibid. 1991, 252 631.
Curvature of Ink vs B plots for a reaction at an electrode was first
established in Saemt, J.-M.; Tesser, [Discuss. Faraday S0d.982 74,

57. Examples of curved lkvs E plots at electrodes (using self-assembled
monlayers) are: Richardson, J. N.; Peck, S. R.; Curtin, L. S.; Tender, L.
M.; Terrill, R. H.; Carter, M. T.; Murray, R. W.; Rowe, G. K.; Creager, S.

between A and B three translations of the relative motion of the two reactants E. J. Phys. Chem199§ 99, 766. Forster, R. J.; Faulkner, L. R. Am.

are transformed into two rotations, with a moment of inegti@, o being
the separation distance apda reduced mass, and into the radial motion.

Chem. Socl994 116, 5444;J. Am. Chem. S04994 116, 9411. Smalley,
J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D;

As a result, one part of the TS expression for the rate constant, which is Liu, Y. P.J. Phys. Chenml995 99, 13141. Ravenscroft, M. S.; Finklea, H.

written in terms of partition functions, ikgT/h)(872uc?kgT/N2)/(2xuksT/
h?)32, which equals (8ksT/u)Y?02. We denote it byZ, a “collision

frequency”. Thus, one can define a reorganizational contribution to the free

energy barrier, theAG* in earlier papers and in eqs 15 and 20, and
distinguish it from the conventional free energy of activatio@' defined

via k = (keT/h) exp(—AG/ksT. (c) For g@iq?., i.e., (8r2uc?ksT/h2)/

ltrans

(2muksT/n?), we see that it equalst? if the u’s are the same. An instructive

0. J. Phys. Cheml994 98, 3843. Feng, Z. Q.; Imabayashi, S.; Kakiuchi,
T.; Niki, K. J. Elec. Chem1995 394, 149.

(31) Churg, A. K.; Weiss, R. M.; Warshel, A.; Takanb,Phys. Chem.
1983 87, 1683. Warshel, AJ. Phys. Chem1982 86, 2218.

(32) For example: Zichi, D. A.; Ciccotti, G.; Hynes, J. T.; Ferrario, M.
J. Phys. Cheml989 93, 6261. Carter, E. A.; Hynes, J. J. Phys. Chem.
1989 93, 2184. Yoshimori, A.; Kakitani, T.; Enomoto, Y.; Mataga, 8l.

alternative route to this result is to note that the momentum phase spacePhys. Chem1989 93, 8316. Tachiya, MJ. Phys. Cheml989 93, 7050.

integrals cancel in the numerator and denominator, and the ratio of the

coordinate integrals ig?/ sin 6 d6 dg// fdx dy, where the denominator
is over a unit area and the numerator yieldssa (d) For g/l we
have keT/nv)/(2muksT)Y2, wherev is an effective frequency for motion
within the solvent cage. If a “force constari’and an amplitude is

introduced, them = (1/27)(ku)2, ka?/2 = kg T, and one findg{/gll) =

(wa®Y2, An instructive alternative route is to note that the momentum phase

(33) Perez, V.; Lluch, J. M.; Bertran, J.Mol. Liq.1994 60, 147. Perez,
V.; Lluch, J. M.; Bertran, JJ. Am. Chem. So0d.994 116 10117. Perez,
V.; Gonzalez-Lafont, A.; Lluch, J. M.; Bertran, J. Chem. Soc., Faraday
Trans.1995 91, 1451.

(34) Bertran, J.; Gallardo, I.; Moreno, M.; Sarg, J.-M.J. Am. Chem.
Soc.1996 118 5737.

(35) For example: Gertner, B. J.; Whitnell, R. M.; Wilson, K. R.; Hynes,

space integrals again cancel in the numerator and denominator, and theJ: T-J. Am. Chem. Sod99], 113 74. Truhlar, D. G.; Schenter, G. K;

ratio of space integrals igexp(—kx%/2ksT)dx/ /dx, where the denominator
is unity (unit length). The result, (&g T/k)2, using the above value &f
again yields £a?)!2.

(21) For example: Enskog theory in: Egelstaff, P.A& Introduction
to the Liquid State2nd ed.; Clarendon Press: Oxford, 1992; p 273. Cf.
Marcus, R. A.nt. J. Chem. Kinet1981, 13, 865.

(22) (a) von Burg, K.; Delahay, RChem Phys. Lett1981, 78, 287.
Delahay, P Chem. Phys. Lett1l982 87, 607. Takahashi, N.; Sakai, K.;

Garrett, B. C.J. Chem. Phys1993 98, 5756. Truhlar, D. G.; Lu, D. H,;
Tucker, S. C.; Zhas, X. G.; Gonzalez-Lafont, A.; Truong, T. N.; Maurice,
D.; Liu, Y. P.; Lynch, G. CACS Symp. Sell992 502 16. Sastry, G. N.;
Shaik, S.J. Phys. Chem1996 100, 12241.

(36) Gehlen, J. N.; Chandler, D.; Kim, H. J.; Hynes, JJTPhys. Chem.
1992 96, 1748. An expansion of this work is given in: Mathis, J. R.; Bianco,
R.; Hynes, J. TJ. Mol. Lig. 1994 61, 81.

(37) Marcus, R. AJ. Chem. Phys1963 39, 1734.



