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A model is considered for SN2 reactions, based on two interacting states. Relevant bond energies, standard
electrode potentials, solvent contributions (nonequilibrium polarization), and steric effects are included. A
unified approach is introduced in which there can be a flux density for crossing the transition state, which is
either bimodal, one part leading to SN2 and the other to ET products, or unimodal with a less marked energy-
dependent separation of the rates of formation of these products. In a unified description an expression is
given for the reorganization energy, which reduces in the appropriate limits to the pure SN2 and ET/bond
rupture cases. Expressions are obtained for the SN2 rate constant and for its relation to that of the concerted
electron transfer/bond rupture reaction. Applications of the theory are made to the cross-relation between
rate constants of cross and identity reactions, experimental entropies and energies of activation, the relative
rates of SN2 and ET reactions, and the possible expediting of an outer sphere ET reaction by an incipient
SN2-type interaction. Results on the photoelectron emission threshold energies of ions in solution provide
some information on a solvation term, and another quantity can be estimated using data from gas phase SN2
reactions or from quantum chemistry calculations. Also introduced for comparison is an adiabatic model
that is an extension of a bond energy-bond order formulation for gas phase reactions.

I. Introduction

A subject of continuing interest is the detailed mechanism
of SN2 and related electron transfer (ET) reactions and the
relation between them:1-5 If A •- and A- denote a radical anion
and an anion such as a carbanion, or other electron donor, such
as an electrode, one type of electron transfer reaction, frequently
termed “outer sphere,” is

or

where R is an organic group and X is usually but not necessarily
a halide. A treatment of the concerted ET/bond rupture reactions
1a and 1b was given by Save´ant,6 using Morse and Morse-like
repulsive curves for RX and R•X-, respectively.
An SN2 mechanism of the electron transfer type, on the other

hand, is described by

or

We consider SN2 reactions in solution, using a two-interacting-
states model. This treatment differs from one introduced for
comparison in Appendix A. The latter is an extension of
Johnston’s7 BEBO (bond energy-bond order) model for SN2
reactions of neutrals to those of the ET type. The present two-
interacting-states model is motivated, in part, by trying to explain
why reactions 1 and 2 sometimes have somewhat comparable
rates while for other systems they can differ by 20 orders of

magnitude. Other experimental observations, discussed later,
also stimulated the present treatment.
Reaction 1 may occur in a concerted or sequential manner

and in either case be followed by reactions of the products.
These products may, in turn, react before or after escaping from
the solvent cage, depending upon the system. Many studies
have been made of the effect of varying the various reactants,
the solvent, and, when A is an electrode, the electrode-solution
potential difference. When RX is sterically hindered toward
an attack by A- on the C in themC-X bond in RX in reaction
2, that reaction tends to become reaction 1. That trend is also
expected when the A-R bond is sufficiently weak.
Stereochemistry has played a significant role in studies of

the reaction mechanism, inasmuch as 100% inversion implies
an SN2 reaction mechanism only, while partial inversion can
imply the operation of both mechanisms, as in stereochemical
studies of the reaction of anthracene radical anions with optically
active 2-octylhalides.8 Other techniques such as measuring
certain ratios of products have also established the ratio of
reactions 1 and 2 rate constants, for example for anthracene
radical anions reacting with methyl halides.9

Another feature of SN2 reactions is the “cross-relation”, which
relates rate constants of “cross-reactions” to identity reactions
(a relation that played a prominent role10,11a,cin the interaction
of theory and experiment for electron transfer reactions). This
relation has also been applied to SN2 and other reactions.1,5

There is also a large body of experimental studies comparing
rate constants for SN2 and ET reactions, their activation energies
and activation entropies, and also the competition of the two
types of reaction within the same system (e.g., refs 1-5 and
9). Extensive experimental studies have also been made of gas
phase SN2 reactions.4d,12 A comparison of their barriers with
those of SN2 reactions in solution provides information on
solvent effects and is discussed in a subsequent section.
The paper is organized as follows: In section II, some general

comments are made on factors that the theory should incorpo-
rate. A unified pictorial description of SN2 and concerted ET/X Abstract published inAdVance ACS Abstracts,April 15, 1997.

A- + RX f A• + R• + X- ET (1a)

A•- + RX f A + R• + X- ET (1b)

A- + RX f AR + X- SN2 (2a)

A•- + RX f AR• + X- SN2 (2b)
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bond rupture reactions is then given. The SN2 limit is treated
next, including both the reorganization energy and the partition
function factor. (These two aspects, together with transition
state theory, yield an expression for the rate constant.) A
functional form is then suggested for the “resonance energy”
of the two states, one that provides a bridge between the two
types of reactions. An expression for the SN2 rate constant is
obtained, and the case of the outer sphere concerted ET/bond
rupture reaction6 is then recalled for comparison and shown to
be a limiting case of the present unified treatment. It is next
shown from the expression for the reorganization energy how
an incipient SN2-type interaction may expedite the concerted
ET/bond rupture reaction.
In section III applications are made to several phenomena or

deductions, to experimental data on the cross-relation for SN2
reactions, the relation of the SN2 and ET rate constants, entropies
of activation of SN2 and ET reactions, the effect of the standard
free energy of reaction on the rate constant, and the use of gas
phase SN2 data to obtain information for application to solution
phase SN2 reactions. We conclude with some remarks on
computer simulations, on applications of quantum chemical
calculations, and on nonequilibrium polarization. An adiabatic
formulation, an extension of the BEBO treatment for SN2
reactions of neutrals, is given in the Appendix.

II. Theory

Introduction. We recall that in a reaction the reactants
diffuse toward each other to form (for convenience of calculation
at least) an “encounter complex” R from which they react.
Reaction then leads to an “encounter complex” P of the products
and thence by diffusion to the separated products. In the present
paper we focus on the process leading from R to P and then
calculate the bimolecular reaction rate constant by assuming,
in effect, a pre-equilibrium for R. If the diffusion from the
separated reactants to form R, or from P to yield the separated
products, becomes sufficiently slow, the calculation below also
provides a unimolecular rate constant for the Rf P process,
upon dividing the bimolecular rate constant by the equilibrium
constant for forming the encounter complex R. This unimo-
lecular rate constant then serves as a boundary condition for
the solution of the diffusion equation.
In treatments of SN2 reaction rates it is desirable to include

factors such as the following:
(i) The energy barrier arising from the bond rupture is

decreased by formation of a new bond. Indeed, in gas phase

metathesis reactions of neutrals this effect can reduce the energy
barrier by a factor of about 10 or so in some systems.7

(ii) The SN2 reactions have a larger steric effect than the outer
sphere electron transfers. The magnitude of this effect is
expected to depend on whether the transition state (TS) is
reactants-like, products-like, or in between.
(iii) Solvent effects typically increase the SN2 reaction barrier

relative to its value in the gas phase. Some partial desolvation,
with an accompanying increase in energy barrier, is expected
to accompany the formation of the TS, since the charge in the
TS is delocalized over a relatively large system, rather than being
localized on a smaller system, the A- in eq 2. This effect is
the usual static solvent effect. When the charge distribution in
the TS is dominated by two very different contributions, a
nonequilibrium polarization of the solvent may occur: the polar
solvent molecules are slow moving and cannot be appropriately
oriented to each of the two different contributions to the charge
distribution. This effect is particularly marked for weak-overlap
electron transfer reactions not involving bond rupture and in
fact is a cornerstone of that theory.10,11 It is the counterpart for
these systems of the conventional static partial desolvation
involved in formation of the TS.
There has been extensive discussion in the literature, using

both stereochemistry and activation energies and entropies, of
the relation between the SN2 reactions 2 and the ET reactions
1. We shall consider how that discussion, which we describe
below, can be phrased pictorially in terms of the crossings of
different parts of a single transition state “hypersurface” (Figure
1). (The hypersurface is a surface ofN - 1 dimensions that
separates the reactants’ from the products’ spatial regions (or
phase space) of theN-dimensional space.)
The model for an SN2 reaction considered below involves

two interacting states, with a resonance energy lowering of the
energy barrier.13 In the model the three items listed above are
treated using a nonequilibrium solvent polarization for item iii.
The two-state description of the transition state (TS) of this reac-
tion can be regarded as corresponding to a mapping of the results
of a multistate (not merely two-state) electronic configuration
calculation in the vicinity of the TS onto a two-state description.
A mapping onto two states has been suggested in the literature.14

When this resonance energyâ is unusually large, the use of
two diabatic states as a starting point may not be as good as
employing an adiabatic model, an example being the Finklestein
reaction discussed later. However, it can still be useful for our
purpose. In many other cases described later, this resonance

Figure 1. Schematic contour plot of the upper and lower potential energy surface for a reaction in which only two electronic states need be
considered in the fully separated species. In one of these (the shaded region) the extra charge is localized on A1

- and in the other on A2-. The
dotted line indicates the TS. As indicated by the arrows, crossing it in one region corresponds to an SN2 mechanism and crossing it in another to
a concerted ET/bond rupture. There is a substantial “splitting” of two surfaces (a and b) in the vicinity of the dotted line region,1 when both A1B
and A2B distances are small, and there can be an admixture of other electronic configurations, such as A1

-B+A2
- and A1•B-A2

•, in the TS region.
There is a saddle-point (not shown) on the lower surface, near the center of the SN2 arrow.
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energy lowering is much less. A virtue of a two-interacting-
state model is that it provides a simple basis for developing a
unified description of the two types of reaction and, we believe,
insight as to why the rates sometimes differ by less than an
order of magnitude. The model is less valid for some SN2
reactions, those whose resonance energy lowering is so large
that other zeroth-order states are almost certainly mixed in.
Potential Energy Surface. It is useful to consider first what

the potential energy surface might look like for an SN2 reaction,

or

and for an ET reaction

or

In the interests of brevity we shall use eqs 3a and 4a as
examples, as in Figure 1, but all such descriptions are intended
to apply to eqs 3b and 4b as well, simply by replacing Ai

- by
A i

•-.
A potential energy surface is sketched schematically in Figure

1 as a function of the A1B and A2B distances. In this Figure,
two electronic states are considered for the fully separated
systems in the solution, A2- + A1

• + B• and A1- + A2
• + B•.

For concreteness, the energy of the latter is taken to be lower
than that of the former. The lower of the two adiabatic potential
energy surfaces is depicted in part a of Figure 1 and the upper
adiabatic surface in part b. In each case the shaded region is
intended to indicate an electronic configuration where the charge
is centered mainly on the A1-, while in the unshaded region it
is mainly on the A2-.
The dotted line borderline region is composed of contributions

from both electronic configurations (and from others) and serves
approximately as the transition state (TS). In the dotted line
region there is a large splitting (avoided crossing) of the two
potential energy surfaces when both A1B and A2B distances
are small. The splitting becomes small, presumably exponen-
tially so, when either of those distances becomes large. There
are, of course, many more coordinates, including the coordinates
of the solvent molecules. They are included in the formulation,
and the dotted line in Figure 1 is intended to represent an (N-
1)-dimensional TS hypersurface in theN-dimensional space. A
connection with computer simulations is discussed in a later
section.
The system can cross from the reactants’ to the products’

region at any place on the dotted line TS. In crossing one part
the reaction corresponds to an SN2 reaction, reaction 3, while
in crossing another part it corresponds to an outer sphere
concerted ET/bond rupture reaction, reaction 4. The former
involves passage across the lower energy regions of the dotted
line in Figure 1a, and so has a lower activation energy and is
indicated by an SN2 arrow, while the ET occurs across an upper
region of the dotted line in Figure 1a and is indicated by the
ET arrow. In some intermediate region of the dotted line
reactive trajectories could end in either product region.
Two views have been expressed in the literature regarding

the ET and SN2 reactions: They occur on the same potential
energy surface and (i) are competitive,2b,8,13,15,16or (ii) the
behavior

is one that varies continuously between these two limits.3,4c

These two views can be described pictorially with the aid of
Figure 1, in terms of the flux density across the dotted line: If
separate ET and SN2 paths contribute, then this flux density is
bimodal, with one peak in the SN2 path region in Figure 1a and
a second peak in the ET path region there. If, instead, there is
only one peak in the flux density across the TS dotted line, i.e.,
if a unimodal behavior occurs, the flux will be concentrated
either along the SN2 path or, for other systems, along the ET
path or, for still others, along some in between path across the
dotted line. In that last unimodal case some crossing trajectories
could end up in the SN2 region of the products, either directly
or by stabilization of a transient SN2-like “intermediate,” and
some in the ET region, again either directly or by dissociation
of that intermediate.16

It is convenient initially to treat the two paths labeled by ET
and by SN2 in Figure 1a separately and then to show how these
paths are limits of a unified treatment. In the latter, crossings
of other parts of the dotted line region are included, namely, in
the region between the two arrows. Indeed, this latter crossing
could prove to be an ingredient in explaining some observations
mentioned later.
Not shown in Figure 1a is another TS, namely, for a different

reaction, the ET reaction between nearby separated particles A1
-

and A2• to form A1• and A2-. Here,x1 andx2 are both large,
but only because B• is far removed from the other two particles.
The TS for this reaction is along the linex1 ) x2 in Figure 1a,
with, at the same time, A1• and A2- being close together and
with there being a suitable fluctuation of the solvent coordinates
to permit this ET to occur. To describe this reaction requires
an additional coordinate, in an A1-A2

• encounter complex, a
fluctuation coordinate analogous to but different from the Y
introduced in eqs 5 and 6 below. Each of these fluctuation
coordinates is related to a molecular coordinate∆Us, described
in a later section of this article, each∆Us being chosen for each
reaction studied.
The model for the SN2 reaction is formulated next.
Two-Interacting-States Model. In an extension of electron

transfer theory to ET reactions accompanied by bond rupture
Savéant6 employed a Morse potential energy functionD1[1 -
exp(-a1x1)]2 - D1 for the rupturing bond RX in reaction 1a or
1b. Here,x1 denotes the bond distance displacement from its
equilibrium value in RX. He also assumed for the repulsion
term between R• and X- the quantityD1 exp(-2a1x1). (The
repulsion arises from the Pauli exclusion principle [cf. ref 17,
valence bond theory, and ref 7a].) There was an experimental
basis for the exponential modeling of the repulsion, namely, in
the experiments and interpretation of Wentworth and co-workers
of experiments on electron attachment to gas phase alkyl ha-
lides.18 TheD1 includes the effect of the change of bond angles
from tetrahedral in RX to planar trigonal in R•. (Cf. also ref
12 of ref 6.) We shall use similar ideas for SN2 reactions.
To treat the SN2 reaction 3, we introduce in Figure 2 a free

energy bookkeeping diagram. (Free energy curves were used
in ET reactions, e.g., refs 10, 11, 19.) One contribution to the
free energy change for forming the TS from the encounter
complex R of the reactants is denoted there by∆Gr. Treated
separately are contributions due to changes in rotational-
vibrational partition functionsQ. We first remark on the various
free energy changes depicted in Figure 2: The free energy
change from the separated reactants to the reactants’ encounter
complex R is denoted bywr - kBT ln qrot

(2)qvib
(1)/qtrans

(3) , where the
superscripts indicate the number of coordinates involved, and
wr is the interaction free energy of A1B and A2- in the encounter
complex R (“work term”). (The equilibrium constantKr for

A2
- + BA1 f A2B + A1

- (3a)

A2
•- + BA1 f A2B

• + A1
- (3b)

A2
- + BA1 f A2

• + B• + A1
- (4a)

A2
•- + BA1 f A2 + B• + A1

- (4b)
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forming R would be obtained by setting-kBT ln Kr equal to
the above free energy change.) Theqrot

(2), qvib
(1), qtrans

(3) are defined
in ref 20.
The displacement of the AiB bond length from its equilibrium

value in AiB is denoted byxi. The changes in (x1, x2) occur
from R to the products’ encounter complex P, rather than before
R or after P. The quantitiesQ(0),Q(1), andQ† are defined by
settingQ(0)qtrans

(3) , Q(1)qtrans
(3) andQ†qrot

(2) equal to the partition
functions for the reactants, the products, and the TS, respec-
tively. The firstqtrans

(3) is that for the reactants, in the center of
mass system of coordinates, the second is that for the products,
and theqrot

(2) is that for the reactants. This choice of notation
for theQ’s is introduced in order to yield simpler expressions
later on. Q(0), Q(1), andQ† contain the same number of
coordinates.
For∆Gr, the free energy of formation of the state (X1, X2, Y)

from R, excluding theQ andqvib
(1) terms (cf. Figure 2), we write

where

andxi refers to the B-A i bond displacement coordinate. In eq
5 there is a solvent fluctuation termλ0Y2, in which a generalized
fluctuation coordinateY is introduced whose equilibrium value
is 0 for the reactants’ state and 1 for the products. Theλ0 in eq
5 will later prove to have its usual significance as a reorganiza-
tion energy. Theλ0 in λ0Y2 may be a function of (X1, X2), since
the geometry of the solute depends on (X1, X2) and is assumed
to be slowly varying.
The D1(X1 - 1)2 term in eq 5 describes the interaction

between A1 and B in A1B, and theD2X22 term denotes the
repulsion between A1B and A2-. As noted earlier theD1 and
D2 include the effect of the changes in bond angles. We should
keep open the option, should future quantum chemistry calcula-
tions support it, of adding a positive term linear inX2 to eq 5a
and, in eq 6 below, linear inX1.
There will also be some solvent caging effect, but from an

energetics point of view its effect on eq 5 is expected to be
relatively minor. Its effect should be mainly on the diffusion
aspects of the problem, when diffusion to R from∞ or from P
to ∞ becomes slow. The molecular counterpart of Y is an
energy difference coordinate∆Us discussed in a later section.
We write a similar expression for∆Gp for forming the state

(X1, X2, Y) from the products’ encounter complex P, again
excluding theQ andqvib

(1) terms in the definition,

In a two-interacting-states model the electron transfer occurs,
in the first approximation, at the “intersection” of the two free
energy curves.10,11,19 Thereby, the free energiesGr andGp are
equal, and it follows (Figure 2) that

where∆G°RP is related to the standard free energy of reaction
∆G° as in eq 9 below and as depicted in Figure 2.
The standard free energy of reaction∆G° of reaction 3 is

given in terms of standard potentialsE°, theD’s, and partition
functions as

whereE°A2•/A2- is the standard potential of the half-cell reaction
Ai• + ef Ai-, and theQ’s denote the partition functions of the
cited species. Since the reactions are occurring in solution, the
minor distinction between Gibbs and Helmhotz free energies
can be ignored throughout.
As one sees from Figure 2, the standard free energy of

reaction from R to P, ∆G°RP, is related to∆G° by

where the subscriptp or r denotes the encounter complex to
which theqrot

(2)qvib
(1)/qtrans

(3) terms refer. Hence,

where partly for simplicity of notation we have canceled the
partition function ratios that appear in eqs 8 and 9, probably
with minor approximation, since theAi• and AiB in eq 8 are
neutrals. One can always reintroduce them in order to calculate
∆G°RP.
The TS should be located by minimizing∆Gr - kBT ln Q†,

subject to the constraint imposed by eq 7. A variational
parameter would be introduced intoQ† for this purpose. We
return to this point later. For the moment we treat the variation
ofQ† along the reaction path as “slow” and include that variation
later in an approximate way. TheGr andGp surfaces in the
(X1, X2, Y) space intersect, and we find the lowest point on the
intersection by minimization of∆Gr in eq 5a, subject to the
constraint imposed by eq 7, and treatingλ0(X1,X2) as a slowly
varying function of (X1, X2). We obtain, in terms of a
Lagrangian multiplierm,

We thus find, with∆G°′ given by eqs 7 and 9b,

where

and we have now included the resonance energyâij of interaction
of the states (i, j ) 1, 2). The second half of eq 12 also serves
to defineλi. Theλ0 in eq 12 is the change in solvation energy

Figure 2. Diagram of free energy changes and definitions for an SN2
reaction. The various symbols are defined in the text.

∆Gr ) D1(X1 - 1)2 + D2X2
2 + λ0Y

2 (5a)

Xi ) exp(-aixi), λ0 ) λ0(X1,X2) (i ) 1, 2) (5b)

∆Gp ) D1X1
2 + D2(1- X2)

2 + λ0(1- Y)2 (6)

∆Gr - ∆Gp ) ∆G°RP+ kBT ln Q(1)/Q(0)≡ ∆G°′ (7)

∆G° ) E°A2
•/A2

- - E°A1
•/A1

- - DA2B
+ DA1B

-

kBT ln QA2B
QA1

•/QA1B
QA2

• (8)

∆G°RP) ∆G° + wp - wr - kBT ln[qrot
(2)qvib

(1)/qtrans
(3) ]p/

[qrot
(2)qvib

(1)/qtrans
(3) ]r (9a)

∆G°RP) E°A2
•/A2

- - E°A1
•/A1

- - DA2B
+ DA1B

+ wp - wr (9b)

X1 ) m+ 1, X2 ) -m, Y) -m, 2m+ 1) -∆G°′/λ
(10)

∆G*r ) λ
4(1+ ∆G°′

λ )2 - âij (11)

λ ) λ0 + DA1B
+ DA2B

≡ λ0 + λi (12)
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accompanying a vertical transition Ai-BA i f A iBA i
-, using

the AiBA i
- geometry in the TS. The distortion of the free

energy by theâij interaction may cause the TS not to lie exactly
where the free energies of the two undistorted states are equal.
We will assume that the resonance energyâii of an identity

reaction (Ai ) A j) is proportional to some property denoted by
Di′, which is to be chosen later and which depends on the AiB
interaction. Sinceâii should also decrease exponentially with
xi, we shall also take it as proportional toXi2l wherel is some
power or fractional power. In the case of a nonidentity reaction,
âij depends on both the AiB and BAj interactions, and we will
assume that it is proportional to (D′i D′j)

1/2 and that it decreases
exponentially withx1 andx2, namely, it is proportional to (XiXj)l.
In summary, we assume

where a typicall is to be determined from some quantum
chemistry estimate. (Alternatively, an arithmetic mean, rather
than a geometric one, might be more appropriate.) Equation
13b reduces to 13a in the case ofi ) j, sinceDi′ ) Dj′, γi ) γj,
andXi ) Xj ) 1/2 then. Thel in eq 13b may be on the order
of unity: In a chemical bond, two electrons are involved, and
at larger distances this interaction, which can be regarded
roughly as a resonance energy of the separated atoms, involves
two electrons and varies (Morse potential at largerxi) asXi and
at negativexi as Xi2. Diatomic Coulombic and exchange
integrals have indeed been expressed in terms of theXi’s.7d In
A iBA j

- four electron integrals replace the two electron ones,
and soâij may be proportional to (XiXj)l, wherel is perhapsca.
1 to 2 instead of 1/2 to 1. Quantum chemistry calculations of
the potential energy surfaces will permit the testing of the
appropriate functional form forâij.
From eq 10 one finds thatX1X2 equals-m(m+ 1), i.e., (1/

4)(1 - ∆G°′SN2/λSN2)2 at the TS of the SN2 reaction. We have,
thereby, from eq 13b,

In an application to the cross-relation, we shall approximate
the geometric mean in eq 13c by the arithmetic mean. With
this subsequent step in mind eq 13c is rewritten as

The term involving the difference of the square roots will be
neglected when (γiDi′)1/2 and (γjDj′)1/2 are not too different.
The rate constant is next evaluated using transition state

theory:20a

We note, in passing, that for reactions in solution there is some
coupling between the solvent coordinates and the vibrational-
rotational coordinates of the solute that participate in theQ’s,
even though we later approximate theQ’s by their gas phase
values. The solvent and solute coordinates are also coupled to
the motion along the reaction coordinate, so permitting the
system to surmount the reaction barrier.

The∆G† can be written as the sum of∆G*r, given by eq 11,
the work termwr, and the partition function term,-kBT ln Q†

qrot
(2)/Q(0)qtrans

(3) . Theqrot
(2)/qtrans

(3) and thekBT/h contribute to (kBT/
h) exp(-∆G†/kBT) a factor denoted by·,20b a “collision
frequency”. We thus obtain

where

∆G°′ is given by eq 9b and the second half of eq 7,âij by eq
13c, and the sum in the second term on the right isλ/4 (cf. eq
12). Strictly speaking, the pre-exponential factorZ in eq 15
will be somewhat larger than in ref 20b, when a distribution
function is introduced for the pair of the reacting solutes in the
liquid.21

We consider next the factorQ†/Q(0). A large moment of
inertia in R, written20b asµσ2, enters intoqrot

(2), and from it into
Z. The corresponding moment of inertia in the SN2 TS is
somewhat smaller than it is in R. We can include this effect
by defining aZSN2/Z, which is the ratio of these moments of
inertia, and employing thisZSN2 in eq 19 below. We consider
next the remaining factors appearing inQ†/Q(0). They are
associated with the conversion of individual rotations of the
reactants into bending vibrations of the TS. Typically,∆G°′/λ
is relatively small: a∆G† Vs∆G° plot for the SN2 reaction is
frequently linear with a slope near 0.5( 0.1, and the
configurations of the TS (e.g.,Y, X1, X2) are roughly midway
between those of the reactants and the products. In this case it
is expected thatQ† have the valueQT, estimated later, for a
tight TS. One question is whether, when∆G°′/λ approaches
-1 and the TS becomes, energetically, reactants-like, theQ†

(apart from theZSN2/Z) approachesQ(0). Similarly, when
∆G°′/λ approaches+1 and the TS becomes, energetically,
products-like, doesQ† approachQ(1)? If the answer to both
questions is yes, then one possible interpolation forQ† between
these three points is

where

For describing theQ for a tight TS,QT, we first denote by
qrot an individual reactant’s rotational partition function that
becomes a vibrational partition functionqvib in the tight TS.
Inasmuch as the polyatomic typically nonlinear reactants have
three rotations each and the transition state has three, it follows
that three of the reactants’ rotations have become vibrations in
the transition state, in the case of a tight TS. We have, thereby,

QT/Q(0)) (qvib/qrot)
3 (19)

and when∆G°′RP/λ is relatively small, eqs 15-19 yield

with ∆G*SN2 given by eq 16. Of course, not all of theqvib’s
need be equal, nor all of theqrot’s, but the notation in eqs 19
and 20 is convenient and suggestive, and in the application
below we do not assume any equality of theqrot’s or of the

kSN2 ) Z[Q†/Q(0)] exp(-∆G*SN2/kBT) (15)

∆G*SN2 ) wr + ∆G*r = wr +
λ0 + D1 + D2

4
- âij + ∆G°′

2
+

∆G°′
2

λ
(16)

Q†/QT = (Q(0)/QT)
|n|(ZSN2/Z) -1e ne 0 (17a)

= (Q(1)/QT)
|n|(ZSN2/Z) 0e ne 1 (17b)

n) ∆G°′/λ (18)

kSN2 ) ZSN2(qvib/qrot)
3 exp(-∆G*SN2/kBT) (20)

âii ) γiD′i (13a)

âij ) (γiγjDi′Dj′)
1/2(4XiXj)

l (13b)

âij ) (γiDi′γjDj′)
1/2[1 - (∆G°′SN2/λSN2)

2] l (at the SN2 TS)

(13c)

âij ) 1/2{[γiDi′ + γjDj′] - [(γiDi′)
1/2 -

(γjDj′)
1/2]2}[1 - (∆G°′SN2/λSN2)

2] l (at the SN2 TS) (13d)

k)
kBT

h
e-∆G†/kBT (14)
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qvib’s. Whenn in eqs 17 and 18 approaches(1, and soQ†

approachesQ(0) orQ(1), apart from aZ factor, the TS becomes
loose, and the pre-exponential factor in eq 15 could then become
substantially larger, for example by a factor of 100 (cf. an
estimate forQT later). Another effect of steric hindrance,
besides leading to eq 19, is an energy of distortion effect
reflected in part in the value ofD2, the energy of the newly
formed bond in reaction 3. Steric hindrance reduces the
magnitude ofD2.
The calculation ofλ0 for the AiBA j

- system in the TS
involves describing the geometry of the solute and then making
a nonequilibrium polarization calculation. One useful experi-
mental quantity is theλ0 for a single ionλ0(A i

-), obtained from
the threshold energyEt of the photoelectron emission by the
ion in solution.22 If GA i

-
e,sol - GA i

•
e,sol is the difference of

equilibrium solvation free energies of Ai• and Ai-, then a
thermodynamic cycle shows thatλ0(A i

-) is obtained from22a

λ0(A i
-) ) Et + GA i

-
e,sol- GA i

•
e,sol- EA i

(21)

whereEA i is the electron affinity of Ai•. If A i
- is, instead, an

ion of arbitrary charge, the same equation applies, with Ai
• now

denoting an Ai with one less negative charge than the ion in
question.
Using a linear response approximation, we also note that the

λ0 for any geometry and any initial charge distribution can be
calculated from a difference of equilibrium solvation free
energies,22b

λ0 ) G1-0
e,sol- G1-0

e,op (22)

where the 1 denotes the final charge distribution after a vertical
transition (in the present case after loss of the electron) and 0
denotes the initial charge distribution, so that 1-0 denotes the
difference of the two charge distributions. The e,op superscript
denotes the equilibrium solvation but where only the electronic
polarizability of the solvent enters rather than the total (electronic
plus the nuclear) contributions.
In concluding this section we briefly comment on an

implication of the preceding equations for the symmetric
stretching force constantksym in the AiBA i

- TS for the identity
reaction, compared with the related stretching force constantks
of A iB. The symmetric stretching coordinate in the TS isx )
(1/x2)(x1 + x2), i.e.,x2x1 along the linex1 ) x2. Using eq 5,
and introducing aâii given by eq 13b, we set∂(Gr - âii)/∂x )
0 to locate the minimum along thatx1 ) x2 line. The desired
force constant is∂2(Gr - âii)/∂x2, ksym, calculated at that
minimum. Here,Gr ) D1(X1 - 1)2 + D1X12 - D1, sinceX1 )
X2 along the line. One finds

We have written eq 23 for the choice ofl ) 1 in eq 13b, for
simplicity, but anotherl can readily be introduced instead.
Outer Sphere Concerted ET/Bond Rupture Reaction.To

compare the above results with those obtained6 for the ET/bond
rupture reaction 4, we first recall briefly a derivation6 of the
rate expression. We consider first the standard free energy of
reaction. The∆G° of reaction 4 can be expressed in terms of
the standard electrode potentials, a bond energy, and partition
functionsQ:

where the partition functionsQ refer to the cited species and
contain all coordinates of A1•, B•, and A1B. The last two terms
in eq 25 represent the free energy of reaction for A1B f A1

• +
B•, the zero-point energies being included in theQ’s.
We consider next, as in Figure 3, a free energy bookkeeping

diagram for the concerted bond rupture/ET reaction, analogous
to that in Figure 2. The left-hand portion of Figure 3 is the
same as in Figure 2, but the right-hand part involves a
termolecular collision of the products to form the encounter
complex P. Depending on the detailed description of P, P may
have a more or less linear or triangular configuration of A1

-,
B•, and A2•. In the former case the six translations of the three
products in the center of mass system of coordinates become
two rotations and four “vibrations,” all caged by the solvent
molecules. In the triangular case there are either three rotations
and three solvent-caged “vibrations” or, if two members of the
three, e.g., A1- and B2•, “rotate” about their own center of mass,
there are four rotations and two vibrations in the motion of the
three particles with respect to each other. We allow for each
of these two possibilities, and one other, by using the symbol
qint
(2) in Figure 3. In forming the termolecular encounter
complex P from the three separated products,qtrans

(6) is con-
verted toqrot

(2)qvib
(2)qint

(2), where qint
(2) may denoteqvib

(2), or qrot
(2), or

qvib
(1)qrot

(1). Further, some of theqrot’s may be qhr, where hr
denotes a hindered rotation.
In Figure 3 we have again used the symbolsQ(0), Q†, and

Q(1), defined by stating that the partition function of the two
reactants (in the center of mass system of coordinates) isQ(0)
qtrans
(3) , that of the TS isQ†qrot

(2) (qrot
(2) referring to the reactants in

R), and that of the products isQ(1)qtrans
(6) . In Figure 3 it is seen

that the partition functions of R and P areQ(0)qrot
(2)qvib

(1) andQ(1)
qrot
(2)qvib

(2)qint
(2), respectively. The total number of coordinates in

Q(0) and Q† is again three less than the total number of
coordinates of the reactants, whileQ(1) has three less thanQ(0).
We return to this point later. From the above definitions or
Figure 3, the∆G°RP that enters into eq 7 is related to∆G° by

where the p and r subscripts again denote the values in the P
and R encounter complexes. For simplicity of notation we have
written allqvib’s in Figure 3 with the same symbol and allqrot’s
as being equal, but this notation is easily changed to specify
the species to which eachq refers.
The relation between∆G°RP and theE°’s, given below by eq

27, is obtained from eqs 25 and 26. We note thatQA1QB/QA1B

Figure 3. Diagram of free energy changes and definitions for a
concerted ET/bond rupture reaction.

∆G°RP) ∆G° + wp - wr +

kBT ln[qtrans
(6) /qrot

(2)qint
(2)qvib

(2)]p/[qtrans
(3) /qrot

(2)qvib
(1)]r (26)

ksym) ai
2Di (l ) 1) (23)

ks ) 2ai
2Di (24)

∆G° ) E°A2
•/A2

- - E°A1
•/A1

- + DA1B
- kBT ln QA1

•QB•/QA1B

(25)
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can be written asQA1

rVQB
rVqtrans

(3) /QA1B
rV where rv denotes the

rotational-vibrational partition function.

The number of coordinates involved in the numerator of the
partition function ratio in eq 27 is the same as the number in
the denominator. We note that in the quantity∆G°RP theqtrans’s
that were present in eq 26 have disappeared in 27, as expected.
Further, when the attacking agent is A2

•- in eq 4 instead of
A2

-, E°A i/A i
•- replacesE°A i

•/A i
-.

For reaction 4 the free energy of formation of a system of
specifiedX1 andY from the reactants A1B and A2-, starting at
the encounter complex R and not including thewr or the partition
function terms, is

As a result of changes inX1 by reaction, the encounter complex
P, consisting of (A1-, B•, A2

•), is reached from R. For the
corresponding free energy of formation of the system defined
by (Y, X1) from the products, starting from the configuration P,
we have

As before,λ0 andQ† can vary with position along the reaction
coordinate.
Once again, the minimization should be of∆Gr - kBT ln

Q†, subject to the constraint imposed by eq 7. However, to
avoid introducing at this point variational parameters intoQ†,
we minimize∆Gr subject to the constraint imposed by eq 7.
We treatλ0, as before, as more slowly varying than the other
terms, and soλ0 doesn’t determine the Lagrangian multiplier
but, as before, can depend on it, and thereby on∆G°RP/λ. We
obtain

whereλ now is given by

∆G°′ is again given in terms of∆G°RP by the second half of eq
7, and∆G°RP is given by eq 27. We have

after cancellations and settingQA1
•

rV /QA1
-

rV = QA2
•

rV /QA2
-

rV (for eq
4a) or=QA2

rV /QA2
•-

rV (for eq 4b).
We consider next the rate constant. Following the arguments

that led to eq 15, we obtain

whereZ is the relevant “collision frequency” between A1B and
A2,20b ∆G*ET is given by

andλ is given by eq 31.

A question arises now concerning the factorQ†/Q(0) in eq
33. The correct value ofQ† would again be obtained from a
minimization procedure that included-kBT ln Q† in the
minimization. However, one simplifying approximation is to
assume that the ET/bond rupture reaction is fully outer sphere
and thatQ†/Q(0) equals the ratio of the large moment of inertia
of the TS to that which appeared in R and hence inZ, and to
suppose that the new rotations that may eventually appear in P
(in qint

(2)) are still, in the TS, the vibrations that they were in the
reactants. In that case we have

where∆G*ET is given by eq 34 andZET contains20b a σ that is
the distance between the centers of A2

- and A1B in the TS.
Although we shall not need it in the present analysis, the

above comments are related to the rate constant of the back
reaction to eq 4, which in turn is related to a termolecular
“collision frequency”Zter: Following an argument similar to
that which led to eq 15,Zter is (kBT/h)qrot

(2)qvib
(1)qint

(2)/qtrans
(6) , and so

its value depends on the model assumed for the termolcular
encounter complex P. Since the possibilities forqint

(2) can vary
from qrot

(2) to qvib
(2), this Zter can vary by a couple of orders of

magnitude, depending on the model used for P. Introducing
values forqrot

(1) andqvib
(1), one finds20c,d

or

whereZ is the bimolecular collision frequency. Two of the
a’s in eq 36 are bending “vibrational” amplitudes, while one is
a stretching amplitude, as is the one in eq 36b. Theσ is on the
order of several angstroms, anda is on the order of a tenth or
a few tenths of an angstrom.
Equations 34 and 35 are equivalent to those derived for the

concerted bond rupture/electron transfer derived earlier by
Savéant6 and also assumed in the work of Eberson.23 The
present description, which utilizes Figure 3, contains a more
detailed discussion of the various free energy changes.
Unified Description and Effect of SN2 Interaction on ET

Rate. We consider next how, using eqs 5a and 13b, one can
obtain a unified description for the reorganization energy for
crossing the dotted line in Figure 1. The equation reduces in
the appropriate limits to the SN2 expression and to the concerted
ET/bond rupture one. We then apply it to show how an incipient
interaction of the SN2 type could catalyze the outer sphere ET/
bond rupture process.
We first note that when there is a pure outer sphere

mechanism, i.e., no incipient SN2 interaction,x2 is so large that
theX2 in eqs 5 and 6 can be replaced by zero. One then obtains
eqs 28 and 29, upon observing that the∆G°′ for the SN2
reaction,∆G°′SN2, equals∆G°′ET - D2, where∆G°′ET is the∆G°′
for the ET reaction. Thus, eqs 28 and 29 for the ET reaction
represent a special case of eqs 5 and 6, one whereX2 tends to
zero. Similiar remarks apply to eq 34 for∆G*ET being a special
case (X2 ) 0) of eq 16, when one uses the above relation
between the∆G*ET’s and notes thatâij becomes very small for
the ET (largeX2) system.
We next consider how an SN2-type interaction might catalyze

an ET reaction, by reducing the reorganization energy barrier.
The free energy surfacesGr(X1,X2,Y) andGp(X1,X2,Y) are equal
on the TS dotted line in Figure 1a, for any given value ofX2.

kET ) ZET exp(-∆G*ET/kBT) (35)

Zter = (πa2)3/2Z (qint
(2) ) qvib

(2)) (36a)

Zter = 4πσ2(πa2)1/2Z (qint
(2) ) qrot

(2)) (36b)

∆G°RP) E°A2
•/A2

- - E°A1
•/A1

- + DA1B
+ wp - wr - kBT

ln(QA1
‚

rV QB‚
rVqint

(2)qvib
(1)/QA1B

rV ) (27)

∆Gr ) λ0Y
2 + D1(X1 - 1)2 (28)

∆Gp ) λ0(1- Y)2 + D1X1
2 (29)

∆G*r ) λ
4(1+ ∆G°′

λ )2 (30)

λ ) λ0 + DA1B
(31)

∆G°′ ) E°A2
•/A2

- - E°A1
•/A1

- + DA1B
+ wp - wr -

kBTln qint
(2)qvib

(1) (32)

kET ) Z[Q†/Q(0)] exp(-∆G*ET/kBT) (33)

∆G*ET ) wr + λ
4

+ ∆G°′
2

+ ∆G°′
2

4λ
(34)
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We minimize∆Gr in eq 5 with respect toX1 andY at a finite
X2, subject to the constraint in eq 7. We again introduce a
Lagrangian multiplier, denoted now bym′. One findsY) -m′,
X1 ) m′+1, and-(2m′ + 1)λET ) ∆G°′ET - 2D2X2. Theâij-
(X1,X2) at this value ofX1 andX2, given by eq 13b, is then
subtracted, since thisâij is resonance energy at the crossing of
the two surfaces at the givenX2. In this way we obtain the
barrier for an ET reaction at a finiteX2:

where we note thatâij(X2)0) ) 0 and thatλSN2 ) λET + D2,
and so∆G°′SN2 + λSN2 ) ∆G°′ET + λET.
At small X2, theX22 term in eq 37a can be neglected, and

since 1+ ∆G°′ET/λET is positive (except in any “inverted” region),
the second term in eq 37a leads to a lowering of the ET free
energy barrier, as does the last term. This lowering is due to
the presence ofX2, i.e., to the proximity of B• to A2

-. The
possibility of there being some SN2-like interaction in an ET
reaction has been suggested earlier.1c,16 In eq 37a there are two
effects of this nature.
The value ofX2 that causes the maximum lowering of the

ET barrier is the value at the SN2 TS: Minimization of the
second term in the right side of eq 37a shows thisX2 to be
1/2(λSN2 + ∆G°′SN2)/λSN2. However, such anX2 would lead to
the SN2 reaction 3 rather than to the ET reaction 4.
To calculate the reaction rate using eq 37a, it is necessary to

have an expression for the ratio of the partition function of the
TS to that of the reactants. (There is also, for the ET case,
some decision to be made for theqint

(2) in eq 32 for∆G°RP.)
Examples of this partition function ratio were given above for
the two limiting cases. In general, as in all applications of TS
reaction rate theory, some estimate must be made for the
behavior of the coordinates in the TS, namely whether they are
vibrations, hindered rotations, or rotations, based on a description
of the relevant parts of the potential energy surface for the solute
in the TS. Equations 20 and 35 are limiting cases. When most
trajectories cross the TS, instead, in some region between those
two paths (arrows in Figure 1a), the three coordinates giving
rise to theqvib3 in eq 20 may be, instead, hindered rotations,
and we simply write the partition function asqint3(X2). The latter
reduce toqvib3 for the pure SN2 path and toqrot3 for the pure
ET/bond rupture path. We have

where∆G*r(X2) - âij(X2) is given by eq 37a. TheZ is also a
function ofX2, a relatively weak one, ranging fromZSN2 at X2
≈ 1/2 toZET atX2 ≈ 0. The appropriate value ofX2 in eq 37b
is obtained by maximizing lnk with respect toX2. Equation
37b for k yields the appropriate limits of eqs 20 and 35.
The X2 effect, i.e., a large enoughX2 that reduces the ET

barrier but not so large that the reaction would become mainly
SN2, has implications for a∆H† and∆S† correlation. These
quantities are obtained from∆G† using the standard thermo-
dynamic expressions. We useX2 as a variational parameter.
The∆H†(X2) and∆S†(X2) vary in opposite directions withX2
as one moves from large AiB distances [large∆H†(X2) and a
less negative∆S†(X2)] to smaller AiB distances (smaller∆H†

and more negative∆S†) along the dotted line. For any reaction
the most important crossings of the TS hypersurface are those
that occur at the minimum (or minima) of∆G†(X2), i.e., at
∂[∆H†(X2) - T∆S†(X2)]/∂X2 ) 0 along the dotted line. Thereby,

a suitable variational transition state theory would yield the value
(unimodal case) or values (bimodal case) ofX2 and hence of
∆S†(X2) and∆H†(X2). When most of the flux density passage
occurs in the ET path region, it would yield the most probable
value ofX2 for catalyzing the ET reaction. The∆H†(X2) -
T∆S†(X2) function provides insights into the question of
unimodalityVs bimodality of the flux density for crossing the
dotted line (TS).

III. Applications and Discussion

We consider several applications of the above expressions
in this section: (i) relation of self-exchange and cross SN2
reactions, (ii) relation between ET and SN2 rate constants, (iii)
entropies of activation of the two reactions, (iv) effect of driving
force on the rate constant, and the topic of linearity of lnkrate
Vs E° plots. We also consider a number of other topics including
numerical results, some remarks on computer simulations, and
nonequilibrium polarization.
Cross-Relation for Rate Constants.The identity reactions

corresponding to the “cross-reaction” 3 are

From eqs 12, 13, 16, and 20 for the SN2 reaction, it follows
approximately that the rate constants of the cross-reaction 3 and
the identity reactions 38 and 39 are related by

when the difference of square roots in eq 13d, and the quadratic
terms in eqs 13d and 16, can be neglected. In eq 40 the 12
superscript refers to the cross-reaction 3, and 11 and 22 refer
to the self-exchange reactions 38 and 39, whileKSN2

12 refers to
the equilibrium constant of reaction 3.
If the quadratic terms in eq 13d and 16 are included, an

additional factor enters into eq 40, just as an extra factor occurs
in the cross-relation for ET reactions.19 Equation 40 has been
tested for various reactions,1c methyl radical transfers for
example, with A1 and A2 being arylsulfonates (no charge
transfer),5 and has been tested with various quantum chemistry
calculations (with an additional quadratic term included, though
it is often small).24 When eq 40 is fulfilled for SN2 reactions,
it suffices in any analytical or numerical calculations to focus
only on the identity reactions 38 and 39, a considerable
simplification. It also serves to distinguish between thermo-
dynamic and kinetic (or “intrinsic”7b) effects on the energy
barrier. Also, there is the well-known advantage that an
interpretation or understanding ofN identity reactions then
provides one of theN(N - 1)/2 SN2 cross-reactions.
Relation of ET and SN2 Rate Constants. In experiments

the reactions between aromatic radical anions and alkyl or other
halides have been extensively studied and have frequently been
assumed to have ET rather than SN2 mechanisms. For ap-
preciably sterically hindered RX’s the absence of inversion has
been confirmed,25 while in others inversion is a variable
component.8,9 The rates of such reactions, e.g., of eqs 1a or
1b, have been compared with those whose SN2 character is
uncertain, but which have the sameE° for the attacking anion
A2

-, for a given RX. That is, A2- is different for the two
reactions, but itsE° is the same. When the rate constants are
comparable, it has then frequently been presumed that the tested
reaction is of the ET-type, eq 1, rather than SN2, reaction 2.
For rate constantskET of reactions of aromatic anion radicals

∆G*r(X2) - âij(X2) ) ∆G*r(X2)0)- D2X2(1+ ∆G°′ET/λET) +

D2X2
2λSN2/λET - (γ1D1′γ2D2′)

1/2{2X2[1 - (∆G°′ET -

2X2D2)/λET]}
l (37a)

k) Z(qint(X2)/qrot)
3 exp([-∆G*r(X2) + âij(X2)]/kBT) (37b)

A1 - B + A1
- f A1

- + BA1 (38)

A2 - B + A2
- f A2

- + BA2 (39)

kSN2
12 = (kSN2

11 kSN2
22 KSN2

12 )1/2 (40)
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with tert-alkyl halides, Save´ant obtained excellent agreement
between the experimental data and his equations (the present
eqs 31, 34, and 35) and quite good agreement for other (n- and
sec-) alkyl halides,16 the experimental barrier now being roughtly
0.1 eV lower than the calculated value, perhaps reflecting some
SN2-like interaction that catalyzes the ET/bond rupture reaction
and, in addition, some SN2 reaction path.
In the experiments of Lund and co-workers3,26 the reactions

of a carbanion, the enolate anion of 4-methoxycarbonyl-1-
methyl-1,4-dihydropyridine (I- below) have been studied and
compared with the attack of the same RX by an aromatic radical
anion of the sameE°. TheDA2B appearing in all the equations
is the presently unknown dissociation energy of the reaction
IR f I • + R:

The experiments were performed with R’s such as admantyl,
neopentyl,tert-butyl, sec-butyl,n-butyl, and ethyl. In reactions
with sterically hindered alkyl halides thek’s were similar to
those with aromatic radical anions of the sameE°’s,3b suggesting
thereby an outer sphere ET mechanism for those reactions of
I-. The stabilization of the TS was large, on the other hand,
for the least hindered systems. For example, for the ethyl
bromide system, the ratio of rate constantskSN2/kET was about
2500.3b

We compare the expressions forkSN2 andkET, using for brevity
the two-interacting-states SN2 model, and consider reactions with
the same A1B but with different A2’s having the sameE°. From
the equations for SN2 reactions and those for ET reactions we
obtain, in the linear expansion (|∆G°′RP|/λ , 1) regime,

using eq 13c and so not using the approximation of neglecting
the difference of square root terms in eq 13d. (If the two
γiD′i ’s differ considerably, the approximation of replacing
their geometric mean by an arithmetic one becomes poor.)
It may also be necessary to include in some cases the

quadratic terms that were present in eqs 16 and 34. In that
case there will be, as noted earlier, additional factors, on the
right side of eq 42, when the|∆G°′|/λ’s becomes appreciable.
Theλ0

ET - λ0
SN2 in eq 42 is expected to be positive, because of

the larger charge separation in the TS of the ET reaction. To
interpret the data in ref 3a, the energy exponent in the ratio
kSN2/kET would need to be only about 5 kcal mol-1. On the
other hand, in a Finklestein reaction,23,3bI- + n-BuBrf n-BuI
+ Br-, the ratio ofkSN2/kET is estimated to be 4× 1020, which
corresponds to a difference in free energy barrier of 29 kcal
mol-1. In the next section we estimate the pre-exponential
factor in eq 42 to be about 1011/109, i.e., about 100.
Savéant and co-workers2b,c,15studied the SN2 reaction of Fe-

(“0”) and Fe(I) porphyrins, prepared electrochemically, with RX,
where various alkyls were chosen for R.

They also studied the ET reactions between RX and aromatic
anion radicals. When the alkyl group in R was not sterically
hindered, the SN2 reaction of the Fe porphyrins with RX was
faster than the ET reaction by approximately 2 orders of
magnitude: The logk Vs the E° curve of the electron donor
(the Fe porphyrin or the aromatic anion radical) was roughly
parallel to that for the aromatic anion radical. To further test
eq 42 forkSN2/kET adequately, it will be necessary to know or
estimate the dissociation energy of the FeIIR- or FeIIIR- bond
in eqs 43 and 44 and to make some estimate of theγi’s and
Di′’s. In a later section we make some estimates for other
reactions.
In the above data in ref 15 the difference in the relevantE°’s

was zero, and so ifDA2B is approximately constant for different
FeIIR-’s (i.e., different B’s in reaction 3) which do not involve
sterically hindered alkyl’s, then the vertical difference of the
two ln k Vs E° plots should be constant (upon neglecting the
quadratic term). The constant vertical difference in the plot
indicates, as Save´ant and co-workers have noted,15 thatDA2B is
approximately independent of B, for B’s that do not cause steric
hindrance. They also noted that there are the two opposing
effects influencing thekSN2/kET ratio: (1) a more restricted
transition state for the SN2 reaction and (2) a lowered energy
activation for SN2, because of the bond formation. The two
effects are present in eq 42.
An analogous study is that by Walder,27 who studied an SN2

reaction between the cobalt(I) form of vitamin B12 and various
alkyl halides: n-butyl iodide, bromide and chloride, ethyl
bromide, and benzyl chloride.

For these various halides thek of the SN2 reaction was a couple
of orders of magnitude faster than its ET counterpart (aromatic
anion of the sameE°).27 If the DCoII-R is approximately
independent of R, such a parallelism is consistent with eq 42,
and once again a knowledge ofDCoII-R and ofγi andDi′ in eq
13 would be helpful.
Another comparison of interest is the ratio ofkSN2/kET when

the A1 in reactions 3 and 4 is varied at fixed A2- and B. From
the equations for ET reactions and for SN2 reactions we again
obtain eq 42. Experimentally, in the reaction of anthracene
anion radicals with 2-octyl halides the ratio of inversion/
racemization (and sokSN2/kET) follows the order Cl> Br > I8

and in the same order for the reaction of anthracene radical
anions with methyl halides.9 This order is the one expected
from eq 42 from the relative bond strengthsDRX and (for a
choiceDi′ ) Di) theγi discussed later. The contribution of the
SN2 mechanism for the 2-octyl halides was8 5, 8, and 11%, and
for the methyl halides it was9 25, 77, and 97% for RI, RBr, and
RCl, respectively.
Entropies of Activation. We consider next the entropy of

activation∆S† obtained from the transition state theory expres-
sion:20a

where∆H† and∆S† are, in turn, obtained from the thermody-
namic expressions∆H† ) ∂(∆G†/T)/∂(1/T) and∆S† ) -∂∆G†/
∂T. Thereby,

Fe(“0”) + RX f FeIIR- + X- (43)

Fe(I)+ RX f FeIIIR- + X- (44)

CoI + RX f CoIIR+ X- (45)

k)
kBT

h
e-∆G†/kBT )

kBT

h
e-∆H†/kBTe-∆S†/kB (46)

kSN2

kET
=
ZSN2

ZET
(qvibqrot

)3
exp(λ0

ET - λ0
SN2

4kBT
+
DA2B

4kBT
+
(γ1D′A1B

γ2D′A2B
)1/2

kBT
) (42)
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and

since the activation energyEa is defined by-kB ∂ ln k/∂(1/T).
Equation 48 was used by Lund and co-workers3 to obtain∆S†.
We next use results from some gas phase SN2 reactions to

estimate the pre-exponential factor in eq 20. For such a reaction
when∆S° = 0, we can writek = Z(qvib/qrot)3 exp(-∆U/kBT),
where∆U is a term essentially independent of temperature. We
write thisk asC′(T) exp(-∆U/kBT). WhenC′(T) varies asTn
and the rate constantk is also written asA exp(-Ea/kBT), with
Ea defined as above, it follows thatA) C′(T)en. We now apply
this expression to gas phase reactions, so as to estimateZSN2-
(qvib/qrot)3 from data on those reactions.
Typical pre-exponential factors,A, for bimolecular metathesis

reactions (tight TS) involving polyatomic species, e.g., CH3
• +

HR f CH4 + R•, are28 about 108.6 M-1 s-1. Sinceqrot varies
asT1/2 while ZSN2 varies asT1/2, n is then-1, if qvib is roughly
unity. ThenC′(T), which equalsAe-n, is about 109 M-1 s-1,
and we note thatC(T) is ZSN2(qvib/qrot)3. If for a loose TS
reaction the pre-exponential factor in eq 35,ZET, is about 1011

M-1 s-1, the ratio of the pre-exponential factors in eq 42 has
the value of about 100, as mentioned in the previous section.
We turn next to the∆S† in eq 48. When we write thek in

eq 20 or 35 in the formk ) C(T)exp(-∆G*/kBT), with C(T) ∝
Tn, it then follows from the definition ofEa thatEa ) ∆H* +
nkBT, where∆H* ) ∂(∆G*/T)/∂(1/T), and that

where∆S* ) -∂∆G*/∂T.
When the dependence of theλ on T is neglected (the

dependence is expected to be weak, as in the usual ET’s) and
the quadratic term in eq 34 is neglected, eq 49 yields for an ET
reaction

upon using eqs 34 and 35 and, for the moment, neglecting any
entropy change associated with the partition function terms in
eqs 32. We return to that point later.
Similarly for the SN2 reaction, using the term linear in∆G°′

in eq 16 and neglecting any dependence ofλ on temperature,
eqs 20 and 49 yield

From eq 51, apart from the∂E°/∂T term, which is largely
related to any entropy change associated with the solvation
change from A2- to A1

-, if we neglect the∂w/∂T terms, which
are expected to be minor unless both reactants are charged, then
from ZET = 1011 M-1 s-1 one obtains∆SET

† = -9.5 eu.
Instead, from eq 51 and the above value, 109 M-1 s-1, for ZSN2-
(qvib/qrot)3, eq 51 yields∆SSN2

† = -22 eu. We next compare
these results for the ET and SN2 reactions with the data.

In ref 3 the least negative∆S† for the ET reactions was about
-9 eu, (in some cases 1-2 eu less) and the most negative∆S†’s
for SN2 reactions involving I- were about-22 eu. These
results agree with the above estimates. It would be helpful
helpful to have direct data on the∂∆E°/∂T term in eqs 50 and
51 to see how small it is.
However, many of the largely ET/bond rupture reactions in

ref 3 have a∆S† that is intermediate in value between the values
of -9 and-22 eu. For example, the reaction between an
anthracene radical anion andn-butyl bromide was investigated
over a very wide range of temperatures,-50 to 50°C and for
a number of other reactions, and showed a∆S† of -16 eu. The
∆S† for the reaction withsec-butyl bromide and with a number
of other halides also had about that value. If we can neglect
the d∆E°/dT due to an approximate cancellation of anion
solvation effects, then this∆S† may reflect steric effects and
another factor mentioned later.
The details of the temperature dependence of the ratio of

inversion/racemization, i.e., ofkSN2/kET, are of particular inter-
est: From the study of the ratios for the reaction of anthracene
anion radicals with 2-octylhalides (X) Cl, Br, I) at 25°C and
at-50 °C, one can estimate from the data8 that the difference
in activation energies of the ET and SN2 reactions is between
1.6 and 2.9 kcal mol-1, instead of the 5 kcal mol-1 mentioned
above for a different system. The ratio of pre-exponential
factors was betweenca. 1 and 15, instead of being about 100
or more. In this case a bimodal characterization of the ratio of
yields of SN2 and ET mechanisms seems less attractive than a
unimodal one, in which the ratio of fluxes ending up as SN2 or
as ET products would be somewhat energy-dependent though
presumably not as much as in the bimodal case. In the following
we consider first a choiceDi′ ≡ Di. Elsewhere, to compare with
an impressive correlation of Pellerite and Brauman (ref 12,
1983), we consider instead a different choice, one involving
EA i.
Another consequence of a unimodal flux density is a possible

continuous correlation between∆H† and∆S† over the above
range of∆S†’s within a series of related compounds. We have
already noted the limiting situations, often referred to in the
literature, of a pure SN2 reaction having a very negative∆S†
and a relatively low∆H†, and a pure outer sphere ET reaction
having a much less negative∆S† and a relatively high∆H†.
Along the TS dotted line in Figure 1 between the ET and SN2
arrows one expects the potential energy to decrease steadily as
one moves from the region where the AiB distances are large,
partly because the splitting of the two surfaces is increasing
and partly because one is also entering a more bonding region.
Only around the SN2 arrow is a saddle-point expected to appear.
If the flux density is unimodal, and if one characterizes the

various regions of the dotted line in Figure 1a (and more
generally of the TS hypersurface) with some parameter, such
asX2, the opposite trends of∆H† and∆S† with X2 described
earlier would lead to a smooth correlation between the two for
a given reaction series. In particular, it seems to occur in the
reaction of theI- in eq 41 with alkyl bromides,3a but thus far
there appear to be only three sets of points on the line, two
with ∆S† ≈ -21 to-22, two with∆S† ) -16, and two with
∆S† ) -9 to-9.5 eu. The∆S† for reacting RBr’s range from
those for unhindered (-22 to-22 eu) to semihindered (-16
eu) to hindered (-9 to-9.5 eu). It would be instructive to see
if experimental points can be obtained between the above three
sets.
A related aspect of this temperature or∆S† behavior concerns

the linearity of the lnk Vs 1/T plot mentioned earlier for the
reaction between anthracene radical anions andn-butyl bromide

∆H† ) -kB
∂ ln(k/T)

∂(1/T)
) Ea - kBT (47)

∆S†/kB ) ln(kh/kBTe) + Ea/T (48)

∆S† ) ∆S* + kB ln(C(T)h/kBT) + (n- 1)kB (49)

∆SET
† ) kB ln(ZETh/kBT) - 1

2
kB - ∂

∂T
(E°A2

•/A2
- - E°A1

•/A1
-) -

1
2
∂

∂T
(wr + wp) (ET, loose TS, linear expansion) (50)

∆SSN2
† ) [kB ln ZSN2(qvibqrot)

3 h
kBT] - 2kB + ...-

1
2
∂

∂T
(E°A2

•/A2
- - E°A1

•/A1
-) - 1

2
∂

∂T
(wr + wp)

(tight TS, linear expansion) (51)
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over the wide temperature range of-50 to 50°C.26a There
was no indication of a possible change of mechanism, i.e., no
change of slope, from a SN2 low pre-exponential factor/low
activation energy behavior at low temperatures to a higher ET
pre-exponential factor/higher activation energy behavior at high
temperature.3 The result is consistent with that described in
the previous section on the inversion/racemization ratio for the
reaction of anthracene radical anions with optically active 2-octyl
halides (namely, having an intermediate value of the ratios of
pre-exponential factors and of the difference of activation
energies). These results, too, seem to favor a unimodal
description of the flux density. However, a more detailed
analysis is needed, preferably supported with trajectories on a
realistic potential energy surface.
We conclude this section with some remarks on the entropy

term associated with the∆G°′ appearing in eq 32 and which
would make a contribution1/2∆S°′ to the entropy of activation
∆S† in the linear regime (∆S°′ ) -∂∆G°′/∂T). The difference
of E°’s contributes to∆S°′ a component principally related to
the solvation entropy of the product ion A1- minus that of A2-.
If the qint

(2) in 32 is largelyqvib
(2), with small amplitudes, as we

have tacitly assumed in writing eq 50, then the last partition
function term in 32 will make relatively little contribution to
∆S°′. If, however, theqint

(2) is qrot
(2) or involves very floppy

hindered rotations, then the term will contribute a positive
contribution to∆S°′ and hence to∆S†. The idea that developing
rotations might contribute to∆S† was suggested by Save´ant.29

It would be very useful to determine the∆S°′ of some of the
reactions, so that its role in affecting∆S† could be studied more
closely.
Effect of Driving Force, -∆G°. There have been many

studies of the effect of driving force, or more specifically of
the effect of theE° of the reactant A2- in eq 4, on logkET.
Such plots are meaningful if theλ in eq 34 does not change
with A2

-. Similar remarks apply to the the SN2 reaction 3.2c

In this sense, eq 40 is more general than any relation that does
not allow for any differences inkSN2

22 (and thereby inλ) in a
reaction series where A2- is varied.
Typically, the slopes of the-kBT ln k Vs E° plots of the ET

reactions have been near the expected value of 0.5, or
less,1d,3,16,26because the reaction is estimated to be typically
downhill. One puzzle, or apparent puzzle, has been the behavior
of the lnkET Vs E° plot for the reaction of aromatic anion radicals
with tert-butyl bromide. It is linear rather than being curved
(parabolic equation) over a substantially larger range ofE°’s
than was expected.3a A pre-exponential factor of 5× 1012M-1

s-1 andλ of 90 kcal mol-1 were used to calculate the expected
parabolic relation, but even if a factor of 1011 M-1 s-1 and (to
yield the same rate constant) the largerλ of 100 kcal mol were
used, a linear behavior would still be surprising. Curved plots
are well-known in the literature for other systems, for example
for Fe(cp)2+/0 undergoing long-range ET across an adsorbed
alkanethiol monolayer to an electrode30 and in various homog-
enous reactions.
There are two views3a,16 in the literature on the significance

of this linearity or apparent linearity for the above reaction, in
part because the data at the high-k end of the plot were obtained
by a different method from the others. We also note that the
∆S† data indicate a mainly (or entirely) outer sphere ET
mechanism, but the experimental∆S† seems to become some-
what less negative at the lowerk end.26a (Data on at the high-k
end do not appear to be available.) If this effect is real, it could
contribute to the unexpectedly high values at the low-k end,
though not enough, a factor of 7 instead of the 100 expected
from a quadratic relation, eq 34. It would be helpful to know,

if the SN2 products are measurable, how the ratio of SN2/ET
products changes over the large range ofE°’s studied. This
reaction of aromatic anion radicals withtert-butyl bromide is
one where very little SN2 contribution is expected.
As noted above, there is some controversy concerning the

legitimacy of plotting the high-k points on the same plot as the
others. Should the points prove to be legitimate, then the
remarks made onqint2 at the end of the preceding section indicate
that the pre-exponential factor would be higher than that
expected from eq 35, which does not take into account some
consequences of the A1B bond extension. It would be useful
to attempt to measure the∆S† at the high-k end, to see if it is
indeed less negative than in the middle-k region.
Comparison of the Numerical Results and the SN2 Model.

In comparing eqs 11 and 12 for the two-interacting-states model
for the SN2 reaction with some numerical results, we focus first
on the identity reactions, for which∆G°′ vanishes.
We compare the SN2 model with data on gas phase and

solution phase SN2 reactions, initially for the group VII members
of the periodic table. For the identity reaction AiB + A i

- f
A i

- + BA i, when B is CH3 and Ai- is F-, Cl-, Br-, and I-, the
solution phase barrier is1c,4dabout 32, 27, 24, and 22 kcal mol-1,
respectively, while the gas phase barrier is 13(?), 10, 11 and
6(?) kcal mol-1.12,4d (These gas phase barriers are from the
bottom of the close contact ion-dipole well to the barrier
maximum.4d) The differences are 19(?), 17, 13, and 16(?) kcal
mol-1, respectively. In the two-state model this difference is
λ0/4, theλ0 being evaluated at the TS geometry. An independent
measure of a related quantity, the single-ion vertical reorganiza-
tion energy, denoted byλ0(A i

-), is available22 from threshold
energies of photoelectron emission by ions in solution, using
eq 21. From the data22 for F-, Cl-, Br-, and I-, λ0(A i

-)/4 is
estimated to be 14, 10, 9, and 8 kcal mol-1, respectively. One
expects theλ0/4 for the Ai- + CH3A i identity reaction to be
between 1 and 2 timesλ0(A i

-)/4. The values cited above are
roughly consistent with this expectation.
We turn next to the barrier for the gas phase identity reactions,

which is (0.5- γi)DA iB, according to eq 16. The ratio of the
experimental gas phase barriers12,4dtoDA iB’s 4d is 0.12(?), 0.12,
0.15, and 0.11(?) for Ai- ) F-, Cl-, Br-, and I-, respectively.
Thus, the two-state model leads to aγi = 0.38, so indicating a
very large effect of the “resonance” interaction of the (multi)
states to lowering the energy barrier. The ratio of the
experimental gas phase barrier to theDA iB for these reactions
(0.5 - γi) is seen to be on the same order (∼10%) as for
reactions involving neutrals.
Applying next the above arguments to SN2 reactions in

solution, if we assume that the barrier isca. 1.5 λ0(A i
-)/4 +

0.12DA iB, we obtain 34, 25, 22, and 19 kcal mol-1 for the F-,
Cl-, Br-, and I- reactions. These values are, as expected from
the choice of the two parameters, close to the experimental
values of about 32, 27, 24, and 22 kcal mol-1.
We consider next some Ai-’s, such as OH- and CN-,

described4e as being poor leaving groups. (It has been pointed
out4 that terms such as leaving group ability and nucleophilicity
are replaced, in the language of ref 7b and 11, by other terms:
intrinsic barrier, thermodynamic driving force.) The attacking
atoms are members of groups IV-VI in the periodic table,
instead of the halide group VII. The halides tend to have lower
barriers relative to the dissociation energies. For example, for
CH3O-, NC- (C attack), CH3CO2

-, CH3S-, and HCC-, the
ratio of experimental gas phase barriers toDA iB is (roughly)
0.35, 0.29, 0.18, 0.32, and 0.35, respectively. Each of these
ratios is substantially higher than the average value for the
halides. Theγi defined by eq 13 is seen to be 0.15, 0.21, 0.32,
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0.18, and 0.15, respectively, values that on the average are much
smaller than the 0.38 average for the halides. (The CH3CO2

-,
with its more delocalized electronic structure, may be a special
case.)
We consider next some reactions in solution for which there

are data on andDA iB andλ0(A i
-). For OH- we estimate the

value ofλ0(A i
-) from photoelectron emission threshold ener-

gies22 to be 37 kcal mol-1. For CN- theλ0(A i
-) estimated from

data on charge transfer spectra,22c using the correlation22a

between them and threshold energies, is about 44 kcal mol-1.
In the two-interacting-state model if one had assumed 1.5λ0-
(A i

-)/4 + 0.12DA1B, the calculated barriers would be 24 and
∼30 kcal mol-1, which are much lower than the observed values
of 42 and 51.4d Thus, the parameterγi again has a value for
these non-halide systems that is smaller than that for the halides.
A γi of 0.16 instead of 0.38 yields 45 and 50 kcal mol-1 for
the OH- and CN- reactions, respectively, which are close to
the observed 42 and 51.
We consider next some cross-reactions, using eq 42 but

recognizing that the higher terms would be needed when a∆G°′,
either for SN2 or ET or both, becomes appreciable. The
Finkelstein reaction, X- + CH3Y f X CH3 + Y-, has, as noted
earlier an extremely high ratio ofkSN2/kET,∼1020. There appear
to be three contributions to this effect: (i) TheDA2B’s are large
for the alkyl halides, leading to a large stabilization of the SN2
product. (ii) The comparison of the SN2 reactions is with
reactions of aromatic radical anions, of the sameE°, instead of
halide ions. The aromatic anions contribute a substantially
smaller amount than halide ions toλ0/4. Theλ0 for the self-
exchange reactions of aromatic ions self-exchange reactions has
been estimated10,2b to be about 15 kcal mol-1, corresponding
to about 7.5 kcal mol-1 for a single ion, while the single ion
λ0’s for the halides estimated from the solution photoelectron
emission threshold energies22 ion data are 56, 40, 36, and 32
kcal mol-1, respectively. (iii) From the gas phase barriers for
the identity reactions for X- + CH3X f XCH3 + X-, theγi
was estimated above to be very large when X- is a halide,
namely, 0.38. This largeγi for the halides leads to a consider-
able reduction of the energy barrier in a two-state model.
We consider next the reactions betweenI- and RX, compared

with the aromatic anion radical-RX reaction. ThekSN2/kET ratio
was considerably less than in the above Finkelstein reaction
case. A reason is the (probably) much smaller bond energy
andγi of IR, as compared with the halide-R bonds formed in
the Finkelstein reaction. Theλ0 was also more favorable to
ET than in the preceding case, since now an aromatic anion
radical is the attacking agent forboth reactions.
In the case of the Fe(“0”), Fe(I), and CoI attacking agents, in

reactions 41-43, the FeIIR-, FeIIIR-, and CoIIR bonds are
presumably stronger than the AR• bonds, where A is an aromatic
group, sincekSN2/kET is substantially larger than unity. Turning
next to the reaction of aromatic anion radicals with thes-octyl
halides, theirkSN2/kET ratio is less than 1. Presumably this newly
formed AR• bond in the SN2 reaction is weaker than the one
with these metal groups.
Quantum Chemistry Calculations andγi. We have sum-

marized in the preceding section some values of the ratio of
the experimental energy barriers of gas phase SN2 identity
reactions to dissociation energies. From them typical values
of γi can be obtained for the different groups in the periodic
table. In some quantum chemistry calculations of Wolfeet al.24a

the ratio of the calculated energy barrier24a to the experimental
dissociation energy4d for H-, HCC-, NC- (C attack), CH3O-,
HO-, HOO-, and HS- is 0.55, 0.43, 0.36, 0.29, 0.23, 0.26, and
0.21, respectively, while those for the halides F- and Cl- are

0.11 and 0.065. Once again there is a considerable difference
between the Ai-’s of group VII on one hand and those of groups
IV and VI on the other, and even a significant difference
between groups IV and VI. The values ofγi for the members
of groups IV-VI, obtained by equating the above ratios to 0.5
- γi, are∼0, 0.07, 0.14, 0.21, 0.27, 0.24, and 0.29, whereas
the values for F- and Cl- are larger, 0.39 and 0.44. Theseγi’s
can be compared with those estimated from the experimental
SN2 gas phase barriers in the preceding section. For group VI
the average here ofγi of about 0.25 compares with values there
of a little under 0.2, and a value in this range might be used as
a rough estimate in applications involving Ai-’s of groups IV-
VI.
Remarks on Computer Simulations. In a system with many

coordinates, one task is that of finding the transition state
hypersurface, and thereby a suitable reaction coordinate. In the
case of weak overlap electron transfer reactions the energy
difference∆U between the products’ and the reactants’ potential
energy10,31 has been a useful reaction coordinate and has
permitted the definition of the transition state as a particular
hypersurface in the space.10,31-33 However, in atom or group
transfers particular care is needed. This energy difference can
be a misleading coordinate, not so much near the TS, where
the∆U between the zeroth-order states is zero, but away from
the TS, for example if the shape of the∆Gr plot Vs the reaction
coordinate is being investigated, as it often is.
Such a difficulty can occur when the contribution∆Ue of

only the (x1, x2) terms [U(x1,x2) for products minusU(x1,x2) for
reactants] is not monotonic along the expected reaction path in
the (x1, x2) space. (Such a situation appears to have occurred
at small A1B distances in ref 33, perhaps arising from the
difficulty noted there of accurately describing the A2B-‚‚‚A1

repulsion.) To avoid this problem, and to learn about theλ0 in
the various∆Gr and∆Gp expressions away from the TS, one
can introduce there a new coordinate∆Us, the difference inU
due to all but the above (x1, x2) terms, and calculateGr-
(x1,x2,∆Us) andGp (x1,x2,∆Us) as functions of∆Us, x1, andx2.
From this informationλ0 can be obtained: atx1 ) 0, x2 ) ∞,
Gp - Gr equalsλ0 + ∆G°′, so yieldingλ0 for the reactants,
while atx1 ) ∞, x2 ) 0,Gr - Gp equalsλ0 - ∆G°′, so yielding
λ0 for the products. Theseλ0’s in the reactants’ region and in
the products’ are unambiguously known, since the two distinct
charge distributions are known. However, in the TS region
questions such as the validity of a two-state approximation arise
and complicate a two-charge distribution description (next
subsection), particularly whenâ is large.
Some quantum chemistry calculations have been performed

seeking for a gas phase system specific transition state con-
figurations for SN2 and ET reactions, (e.g., ref 34). The TS for
the ET reaction, however, has a much broader definition than
a saddle-point, because of the “looseness” of the TS. It would
be useful, therefore, to explore the entire TS region, e.g., the
dotted line in Figure 1a near and between the SN2 and ET
arrows. In the process, a broader definition of TS than a saddle-
point is used, and the solvent is included, using near the TS the
∆U as a reaction coordinate. Perhaps it may be possible in the
process to extend or examine some existing SN2 trajectory
studies in solution35 to include the ET portion of the TS and
the region in between. The question of whether the flux density
across this TS is bimodal or unimodal could be explored, for
example.
We also note that simulations can shed light on the relative

importance of the various terms in the equations for∆Gr, as
well as in testing some empirical form such as that in Appendix
A, perhaps with a differentpi there for the electronic and
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solvation terms. The functional form of model in Appendix
A, or the corresponding form for neutrals, can be tested via
only its consequences, since a concrete definition ofni in terms
of actual coordinates was not given or needed.
Nonequilibrium Polarization. We consider next the evalu-

ation of the solvent reorganization energy portion of the energy
barrier to reaction, theλ0/4 in eq 16. We recall the origin of
this barrier, which is different from that due to a desolvation of
A2

- in reaction 3 or 4: The slow moving solvent molecules
cannot be appropriately aligned to the instantaneous position
of the electronic charge in A1BA2

-. Thereby, the set of nuclear
configurations adjusts, instead, to some averaged charge dis-
tribution of the electrons in A1BA2

-. One main problem is then
how to treat the correlation between the electrons in A1BA2

-

and those of the solvent.36 The treatment of that correlation,
together with finding the nonequilibrium distribution of positions
of the nuclei of the solvent, was the main focus in the electron
transfer theory.11b

When the “frequencies” (energy level differences, in units
of h) of the electronic motion in A1BA2

- and in the solvent are
comparable, the attractive electron correlation is described via
London dispersion forces (second-order perturbation theory).
In the present problem there are a variety of relevant electronic
“frequencies” of A1BA2

-. One electronic frequency in the TS
of A1BA2

- is that associated with the splitting∆ε of the two
states there and is the frequencyV ) ∆ε/h for the electronic
oscillation that would occur in a time-dependent electronic
oscillation problem, A1-BA2 T A1BA2

- or A1
+δ-1B-δA2 T

A1B-δA2
δ-1, whereδ may be positive or negative. Another

frequency, roughly speaking, is that associated with electronic
transition within each Ai- to an excited electronic state of Ai-,
the electronic “frequency” being∆E/h. It is large and more or
less comparable with the solvent electronic frequencies. Any
detailed treatment of the electron correlation should not be
confined to a two-state model, particular whenâ is large. In a
more realistic description one would solve the many-electron
correlation problem directly, not making any two-state pre-
judgement. However, except when the excess electron in
A1BA2

- can be regarded as “slow”, the problem is formidable.
We recall here only a two-state model, in which we assume

in addition the electron to be “slow”. Using statistical mechan-
ical results in ref 37 and 22, based on a linear response
approximation [the quadratic dependence onY in eqs 5 and 6],
it will be recalled that the free energy of a nonequilibrium
polarization termλ0 was given by eq 22. The “0” in eq 22
refers to the charge distribution of the solute which determines
the distribution of nuclear coordinates of the solvent in the TS.
This F0 is, in the TS state, approximately equal to1/2(FA1 +
FA2) in a two-state approximation if electronic overlap is
neglected;FA i is the charge density if the electron were
concentrated on Ai- or AiB-; that is, thisF0 is distributed equally
between the A1 and A2 regions. The “1” in eq 22 refers to the
actual charge distribution, which, in the present instance, for
the TS isFA1 when the electron is in the vicinity of A1 and is
FA2 when in the vicinity of A2. Thus,F1-0 is approximately
1/2(FA1 - FA2) in the vicinity of A1 and 1/2(FA2 - FA1) in the
vicinity of A2, for this case, where both A1- and A1- bear a
single negative charge in reaction 3. Thereby, 1-0 corresponds
to there being a hypothetical charge of-e/2 on A1 and-e/2
on A2-.
Purely for illustrative purposes an oversimplified two-sphere

model is next used for the present system, in conjunction
with a dielectric continuum model,∆Gsol

ne. The expression for
G1-0
e,sol is then-(e2/4)(1/2a1 + 1/2a2 - 1/R)(1 - εs

-1) and that
for G1-0

solv(op) is (-e2/4)(1/2a1 + 1/2a2 - 1/R)(1 - εop
-1),

whereεs andεop are the static and optical dielectric constants
of the solvent. Thereby, the free energy barrier∆Gsol

ne would
be (e2/4)(1/2a1 + 1/2a2 - 1/R)(εop-1 - εs

-1), the well-known
expression forλ0/4. More general continuum expressions, with
a more realistic geometry, could be used instead. Still, more
generally, one could use a statistical mechanical calculation to
obtainG1-0

sol andG1-0
sol (op), rather than a continuum expression.

For the present purposes, we only needλ0 in the TS region.
If one wished to obtainλ0 for any other (x1, x2) value, e.g., for
a system in the encounter complex regionR, instead of the TS,
one could again use the above ideas to obtain theλ0. For
example, in the configuration R the “0” charge density has a
negative charge on A2 and none on A1. In the “1” system, i.e.,
the A1-BA2 system, there is a negative charge -e on A1 and
none on A2. Thus in a 1-0 system, there is a charge of -e on
A1 and+e on A2. The two-center model forλ0 yields, using
eq 22,e2(1/2a1 + 1/2a2 - 1/R)(εop-1 - εs

-1), which is the usual
expression forλ0. In a somewhat more elaborate treatment of
a “slow electron” in the A1B A2

- TS, i.e., not a two-state model,
one would solve its one-electron Schro¨dinger, taking into
account its instantaneous interaction of the electron with the
nuclei and with the electrons of the solvent. However, for
systems with a largeâ in the TS region, this electron is not
“slow”, and a more elaborate and non-two-state description
needs to be explored.

IV. Summarizing Remarks

We have explored a molecular two-interacting-states model
(and in Appendix A a modified BEBO-like one) for SN2
reactions of the ET type, have extended slightly a model for
outer sphere ET/bond rupture reactions, and introduced a unified
description of the two, as in eqs 37a and 36b. The question of
bimodalVsunimodal flux density for crossing the transition state
(hypersurface) is also discussed, together with some data that
may relate to this question. Estimates were made of entropies
of activation for two limiting situations (loose and tight TS),
and were also considered in relation to the data on SN2 Vs
concerted ET/bond rupture paths. Variational calculations
taking into account the dependence of the TS partition function
Q† on a variational parameter (e.g.,X2) can be used to implement
the unified description. Other topics considered were the cross-
relation, effect of driving force, leaving group, relative rates of
SN2 and ET/bond rupture paths, and a possible expediting of
the ET/bond rupture by an incipient SN2 interaction. Various
numerical results were used to estimate a resonance energy
parameterγi.
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Appendix A. Adiabatic Model

In his BEBO model for SN2 reactions of neutrals, Johnston7

obtained (in a more detailed molecular version) a consistency
with experimental activation energies to about(2 kcal mol-1.
His method (constant bond order) is consistent with (and perhaps
motivated by) the fact that the activation energies of the
thermoneutral reactions are considerably less than the energy
of the bond being broken. The latter result could be construed
as implying an approximate constancy of “bond order” during
the reaction. In the extension here to SN2 reactions in solutions,
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a simple functional form, related to that in one version of
Johnston’s approach, is adopted, but now no longer involving
only bond energies. Electron affinities and solvation free
energies also appear, and the “bond order” is replaced by a
reaction coordinate. The three effects (i-iii) in the Introduction
are again included, the solvation effect (iii) via a partial
desolvation.
In a BEBO treatment7 of gas phase reactions the bond order

of the rupturing bond in the reactants was denoted byn1, that
of the newly forming bond byn2, and the energy of the AiB
bond (i ) 1, 2) relative to vacuum byVi. TheVi andni were
related by7

where in the exponentpi is a quantity whose value is in the
vicinity of zero,7 typically around 0.1. Thepi should be greater
than zero, in order thatVi not be larger in magnitude thanDi in
the interval 0e ni e 1. Johnston7 defined the reaction path by
introducing a constant bond order approximation, namely,

the physical justification for the latter being that implied earlier,
namely, there is little change of electronic energy along the
reaction path. In ref 7a a triplet repulsion between the distant
groups, A1 and A2, was also included and played an important
role. When it is neglected,pi becomes an empirical parameter
rather than being evaluated7a from spectroscopic data. The
energy of the system along the reaction path relative to that of
the reactants is thenV1 + V2 + D1, since initiallyn1 ) 1 and
n2 ) 0.
In the case of bond energies and activation energies for

neutrals, the smallness of the latter relative to the former in a
thermoneutral reaction shows that thepi in eq A1 must be close
to zero: With a TS havingn1 = n2 = 1/2, and withD1 = D2

(thermoneutral reaction) the energy barrier is-2D1(1/2)1+pi +
D1, and so (1- 2-pi) must be small and typicallypi is on the
order of 0.1. In the present case, (A1‚‚‚B‚‚‚A2)- involves
additional changes besides bond energies.
Quantities relevant to the reactants in reaction 3 are the

election affinityEAi• of A i
•, the dissociation energyDAiB of A iB,

and the solvation free energy of the ion Ai
-, - gA i

-. Their
contribution to the free energy of the system changes from
-DA1B - EA2

• - gA2
- for the reactants to-DA2B - EA1

• - gA1
-

for the products. Each individual term in the sum may be large,
and the sum even more so. The barrier to reaction is expected
to be substantially less than this sum, and so for this reaction
in solution one might consider modeling this contributionG of
the free energy by an empirical expression of a form functionally
similar to that in eq A1:

The use of a singlepi for all the electronic and solvation
effects is an assumption that we have introduced in eq A3 only
for notational brevity. A simple modification for the case in
which differentpi’s are used for the solvation (g) and electronic
terms (-D - E) is given later. With this expression both gas
phase and solution phase barriers can be treated.
In eq A3 thepi is different from that in eq A1 but is again

close to zero, and eq A2 is still used. For example for the Cl-

+ CH3Cl f ClCH3 + Cl- reaction, theEA, DAB andgA- are
about 83, 84, and 77 kcal mol-1, and so the sum is about 244

kcal mol-1, whereas the energy barrier to reaction is about 26
kcal mol-1, i.e., on the order of 10% of the sum.4d This
percentage is higher for identity reactions for which in AiB +
A i

- f A i
- + BA i the Ai- is not a halide.

The source of the repulsion term is seen in Save´ant’s model6

for concerted ET/bond rupture, eq 29, as well as in eqs 5 and
6. Because of the correlated nature ofn1 andn2 in eq A2 and
because of the omission of a triplet repulsion term, it should be
stressed that one cannot assign theVi term only to the AiB
bond: An increase in one bond length is accompanied by a
decrease in the other, because of the correlation. Instead, the
G in eq A3 is now only an empirical form, one which has several
advantageous features listed below. Correspondingly we treat
n2 as a reaction coordinate and no longer as a bond order. The
same remarks apply to the application to gas phase reactions.
One feature of eq A3 is that whenpi is close to zero the

fractional change inG is relatively small, as observed experi-
mentally in some reactions (particularly those of halides). A
second feature is that eq A3 incorporates three effects mentioned
earlier: with pi close to zero, the terms yield the partial
desolvation which accompanies the delocalization of charge over
the entire A1BA2

-. The presence of theDA iB terms in eq A3
yields an increase in overall electronic energy, paralleling the
repulsion in eqs 5 and 6, and theEA• terms yield to an expected
weaker electron affinity of A1BA2

-, compared with that of the
smaller A1- or A2

-. A third feature is that for identity reactions
(A1 ) A2) it makes the barrier for the reaction in solution larger
than the gas phase barrier, as found experimentally and as
discussed later. (Theg terms in eq A3 are absent in the gas
phase reaction.)
The quantitiesEAi• + gAi- are related to the standard electrode

potentialsE°A i•/A i- by

Using the values ofE, g, andE° for some known system, the
sumEA i- + gA i- can be obtained from theE°A i•/A i- for any other
system.
The change of solvation from configurations appropriate to

reactants to those appropriate to products is treated by theg
terms in eq A3, whereas it is treated by theY terms in eqs 5
and 6. The free energyG along the reaction path is given by

where

D1 ) DA1B, E1 ) EA2•, g1 ) gA2-, etc., and thew terms have
been added to eq A5 to allow for the interactions at R (wr, n1
) 1) and at P (wp, n2 ) 1) and to interpolate between them.
Typically, one expects for reaction 3 thatwr = wp. Then the
last two terms in eq A5 reduce towr. However, that ap-
proximation is not made in eq A7 below.
Equation A5 reduces to the desired initial thermal equilibrium

value at R and to the desired final equilibrium value at P. There
is also some mean van der Waals’ type solvation of the neutral
A1B and of A2B, but we assume it to be roughly constant during
the reaction, compared with changes in the usually larger ion-
solvation and electronic terms.
From the preceding equations we obtain, starting at the given

configuration R, the free energy change∆Gr at any point (n1,
n2) along the reaction path. It includes changes in electronic
and solvational terms, but not in the lnQ terms in its definition.

Vi ) Dini
1+pi (A1)

n1 + n2 ) 1 (A2)

G ) (-DA1B
- EA2

• - gA2
-)n1

1+p1 +

(-DA2B
- EA1

- gA1
-)n2

1+p2 (A3)

EA1
• + gA i

- - (EA2
• + gA2

-) ) E°A2
•/A2

- - E°A1
•/A1

- (A4)

G) - ∑
i)1,2

Cini
1+pi + n1wr + n2wp (A5)

Ci ) Di + Ei + gi (A6)
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The ∆Gr equalsG - (-G1 + wr), and eqs A5 and A6 then
yield

where∆G°′ is given by eq 9b and the second half of eq 7.
We next determine the transition state by setting∂∆Gr/∂n1

) 0, subject to the constraint imposed by eq A2, i.e., settingn2
) 1 - n1 wherever it appears. We obtain

Whenn1 = n2 = 1/2, the first term in eq A5 is (1/2)∑iCi(1
- 2-pi). When this barrier is small relative to (1/2)∑iCi, i.e.,
relative to the mean of the initial and final solvation plus
electronic terms, thenpi must be close to zero, and we may
expand the first term in the right side of eq A7 about its value
at pi ) 0, as in ref 7b for gas phase metathesis reactions. The
above equations then yield

where the∆ in eq A9 indicates that thei ) 1 term is to be
subtracted from thei ) 2 term. We could now proceed, as in
ref 7b, to simplify eqs A9 and A10 by symmetrizing them, so
leading to a functional form for∆Gr similar to the tanh
expression there. Instead, we shall for our immediate purposes
expand the equations aboutn1 ) n2 ) 1/2. Upon writingn1 )
(1/2)- x, n2 ) (1/2)+ x, and expanding the right-hand side of
eq A10 in powers ofx, up to and includingx2, we have∆Gr )
A + Bx + Cx2 + ..., whereA ) (1/2)[(p1C1 + p2C2)ln 2 +
∆G°′RP, B ) ∆G°′ + (p1C1 - p2C2)(1 - ln 2) andC ) -(p1C1

+ p2C2). To obtainx and hencen1 andn2 in the TS for any
∆G°′RP, we can either make the same approximation to eq A9
or, equivalently, minimize∆Gr with respect tox, yieldingn2 -
1/2 ) x ) -B/2C, and hence∆G*r ) A - B2/4C, i.e.,

plus higher order terms. In eq A11 the∆G°′2 is really an
approximation toB2, as described below. Theλ in eq A11 is
defined by

Introducing the values forC1 andC2, we note that

C1 also describes the change in electronic energy and solvation
free energy of the reaction which would accompany any actual
passage of an electron into the gas phase (apart from a small
surface potential term of 0.1-0.2 eV).22a

where e is in the gas phase and A2
- is solvated.C2 describes

the energy change in reaction A14 when the 1 and 2 there are
permuted. We have noted that the∆G°′2 in eq A11 is really
B2, defined above. However, typically, ifpi = 0.1, the (p1C1

- p2C2)(1 - ln 2) in â becomes 0.03∆G°′ and may then be
neglected relative to∆G°′.

We consider next the interpretation of some experimental
results with the model. The difference in solution phase and
gas phase barriers in that model isgAipi ln 2. A pi ln 2 of 0.2
for this term would yield 21, 15, 14, and 12 kcal mol-1 for this
difference, for F-, Cl-, Br-, and I-, respectively, compared with
the experimental values of 19(?), 17, 13, and 16(?), respectively.
On the other hand a value ofpi ln 2 of 0.07 for the gas phase
barriers yields 13, 12, 10, and 9, respectively, compared with
experimental values of 13(?), 10, 11, and 6(?). Ifpi ln 2 were
assigned an intermediate value, 0.11, rather than using two (0.2
for the solvation and 0.07 for the electronic contribution), the
solution phase barriers would be 34, 27, 24, and 21 kcal mol-1,
which are close to the experimental values listed above, but
the above arguments suggest that the solvationpi and the
electronicpi differ. The arguments made in the text regarding
groups such as OH- and CN- would imply api of 0.18 instead
of 0.11. In particular, api of 0.18 instead of 0.11 would be
needed to obtain the observed 42 and 51 kcal mol-1 for the
OH- and CN- reactions.
If different pi’s were used for the solvation (piS) and electronic

(pie) terms, then eq A11 would still apply, but eq A12 would
now read
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